摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particle layer is provided with recesses formed in a surface thereof, the surface facing the second electrode, the recesses each having a depth smaller than a thickness of the insulating fine particle layer, and when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted though the second electrode.
摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer that includes insulating fine particles but does not include conductive fine particles, the electron acceleration layer being provided between an electrode substrate and a thin-film electrode. This electron emitting element accelerates electrons in the electron acceleration layer and emits the electrons from the thin-film electrode, when a voltage is applied between the electrode substrate and the thin-film electrode. Accordingly, the electron emitting element of the present invention makes dielectric breakdown hard to occur. Further, this electron emitting element is produced easily at low cost and capable of emitting a steady and sufficient amount of electrons.
摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode; and comprising first insulating fine particles and second insulating fine particles larger than the first insulating fine particles, a surface of the insulating fine particle layer having a projection formed from the second insulating fine particles, and a second electrode formed on the insulating fine particle layer, wherein when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted from the second electrode via the projection.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode, and the electron acceleration layer includes a fine particle layer containing insulating fine particles and a basic dispersant. This makes it possible to provide an electron emitting element which does not cause insulation breakdown in an insulating layer and which can be produced at a low cost.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer provided between an electrode substrate and a thin-film electrode, which electron acceleration layer includes (a) conductive fine particles and (b) insulating fine particles having an average particle diameter greater than that of the conductive fine particles. The electron emitting element satisfies the following relational expression: 0.3x+3.9≦y≦75, where x (nm) is an average particle diameter of the insulating fine particles, and y (nm) is a thickness of the thin-film electrode 3. Such a configuration allows modification of the thickness of the thin-film electrode with respect to the size of the insulating particles, thereby ensuring electrical conduction and allowing sufficient current to flow inside the element. As a result, stable emission of ballistic electrons from the thin-film electrode is possible.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
摘要:
An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.