摘要:
A system and method are disclosed for improving hard drive actuator lead attachment. In one embodiment, an actuator board is coupled to an actuator flexible cable by a bonding agent, such as an anisotropic conductive film (ACF). In one embodiment, an actuator flexible cable is coupled to one or more actuator coil leads, such as by solder bump bonding, and the flexible cable/actuator coil coupling is embedded in an actuator frame, such as by polymer injection molding.
摘要:
A system and method are disclosed for improving the electrical connection of a hard drive relay flexible circuit assembly to a head-gimbal assembly (HGA) flexure cable. In one embodiment, a flexible circuit assembly is attached to a hard drive coil carriage via a U-shaped connector and is electrically coupled to the HGA flexure cable by a bonding agent, such as an Anisotropic Conductive Film (ACF).
摘要:
A system and method are disclosed for improving the electrical connection of a hard drive relay flexible circuit assembly to a head-gimbal assembly (HGA) flexure cable. In one embodiment, a flexible circuit assembly is attached to a hard drive coil carriage via a U-shaped connector and is electrically coupled to the HGA flexure cable by a bonding agent, such as an Anisotropic Conductive Film (ACF).
摘要:
A method for mounting a head stack assembly (HSA) circuit assembly is disclosed. A flexible circuit substrate may be coupled to a stiffener. The stiffener may be a metal, such as aluminum, or some other stiff and durable material. The flexible circuit substrate may be made of an organic material and may have a series of electronic leads embedded in the flexible circuit substrate. The flexible substrate may be coupled to the stiffener by an adhesive or laminated onto the stiffener. The stiffener may be mounted onto the actuator arm by soldering or by laser welding.
摘要:
A method for mounting a head stack assembly (HSA) circuit assembly is disclosed. A flexible circuit substrate may be coupled to a stiffener. The stiffener may be a metal, such as aluminum, or some other stiff and durable material. The flexible circuit substrate may be made of an organic material and may have a series of electronic leads embedded in the flexible circuit substrate. The flexible substrate may be coupled to the stiffener by an adhesive or laminated onto the stiffener. The stiffener may be mounted onto the actuator arm by soldering or by laser welding.
摘要:
A method for mounting a head stack assembly (HSA) circuit assembly is disclosed. A flexible circuit substrate may be coupled to a stiffener. The stiffener may be a metal, such as aluminum, or some other stiff and durable material. The flexible circuit substrate may be made of an organic material and may have a series of electronic leads embedded in the flexible circuit substrate. The flexible substrate may be coupled to the stiffener by an adhesive or laminated onto the stiffener. The stiffener may be mounted onto the actuator arm by soldering or by laser welding.
摘要:
A method for mounting a head stack assembly (HSA) circuit assembly is disclosed. A flexible circuit substrate may be coupled to a stiffener. The stiffener may be a metal, such as aluminum, or some other stiff and durable material. The flexible circuit substrate may be made of an organic material and may have a series of electronic leads embedded in the flexible circuit substrate. The flexible substrate may be coupled to the stiffener by an adhesive or laminated onto the stiffener. The stiffener may be mounted onto the actuator arm by soldering or by laser welding.