Abstract:
An irregular shift of the electron beam caused by a spacer is compensated without making a design change of the spacer. A rear plate 1 in which an electron source substrate 9 disposed with plural electron-emitting devices 8 emitting the electron is fixed and a face plate 2 in which a metal back 11 for accelerating the electron is formed are disposed in opposition to each other, and these plates are supported by the spacers 3 with constant intervals, and the initial velocity vector of the electron emitted from the electron-emitting device 8 is different according to the distance from the spacer 3.
Abstract:
In an electron beam apparatus including an electron source and an electron beam irradiation member, a potential specifying plate including openings through which an electron transmits is provided between the electron source and the electron beam irradiation member. A spacer is located between the electron beam irradiation member and the potential specifying plate. In the case where a distance between a region between one opening of the potential specifying plate near the spacer and the spacer and the electron beam irradiation member is D1 and a distance between a region between that opening and another opening not near the spacer and the electron beam irradiation member is given by D2, if D1
Abstract:
An image forming apparatus comprises first and second substrates, a support frame arranged between the first and second substrates, and surrounding a space between the first and second substrates, electron emitting devices arranged on the first substrate facing the space, and an image forming member arranged on the second substrate. A spacer is disposed in the space between the first and second substrates, and a conductive film is arranged on the second substrate to surround the image forming member. The conductive film is supplied with a potential lower than that applied to the image forming member, and the spacer has a length greater than that of the image forming member. Each longitudinal end of the spacer is arranged between the inner periphery of the support frame and a respective plane through which a corresponding end of the conductive film extends perpendicularly to a principal surface of the second substrate.
Abstract:
An electron beam device comprising an electron source having an electron-emitting device, a member to be irradiated with an electron beam disposed opposite to the electron source, and an electrically conductive spacer disposed between the electron source and the member to be irradiated with the electron beam, is characterized in that an electrode is disposed along an end portion of the spacer on the electron source side, and the electrode is disposed inside a region of a surface of the end portion of the spacer which is directed toward the electron source side.
Abstract:
A method of fabricating an electron source constituted by a plurality of x-direction wirings arranged on a substrate, a plurality of y-direction wirings crossing the x-direction wirings, an insulating layer for electrically insulating the x- and y-direction wirings, and a plurality of conductive films each of which is electrically connected to the x- and y-direction wirings and has a gap, comprises a conductive film formation step of forming a plurality of conductive films to be connected to the pluralities of x- and y-direction wirings, a grouping step of dividing all the x-direction wirings into a plurality of groups, and a forming step of sequentially performing, for all the groups, a step of simultaneously applying a voltage to all wirings assigned to the same group, thereby forming gaps in the plurality of conductive films. The grouping step includes the steps of assigning a plurality of wirings to each group, and arranging wirings constituting a group between wirings constituting other groups.
Abstract:
In a manufacturing process of an image forming apparatus (electron beam device) using electron emission elements, particularly, surface conduction type electron emission elements, wirings on an electron source substrate on which the wirings and element electrodes are formed are opposite to electrodes for a face plate, and a given voltage is applied between the wirings and the electrodes to thereby generate a discharge phenomenon in advance, thus removing a protrusion or the like. In this way, when an electric field applying process is conducted on the electron source substrate, a factor such as a protrusion in an electron source which induces a discharge phenomenon in driving an electron beam device represented by an image forming apparatus is removed, thus realizing an image forming apparatus excellent in display characteristic with no defective pixel even in image display for a long period of time.
Abstract:
An electron beam device comprising an electron source having an electron-emitting device, a member to be irradiated with an electron beam disposed opposite to the electron source, and an electrically conductive spacer disposed between the electron source and the member to be irradiated with the electron beam, is characterized in that an electrode is disposed along an end portion of the spacer on the electron source side, and the electrode is disposed inside a region of a surface of the end portion of the spacer which is directed toward the electron source side.
Abstract:
On the surface of an ink-permeable sponge material having open cells, a melted portion and an unmelted portion are formed by a thermal head printer controlled by a memory processor for desired imprint data to prepare a stamp having the unmelted portion as an ink oozing imprint surface. Furthermore, a stamp material plate comprising the tape-like sponge material is wound up in the form of a roll and then received in a cassette case, and a stamp material cartridge comprising this cassette case is mounted in a cartridge receiving section of the thermal printer capable of printing in a tape form. A print image set by input from a keyboard or external input is printed on the stamp material comprising the sponge material fed from the cartridge by the thermal head, while the stamp material is pressed, to form a concave having a depth of 0.01 mm or more, thereby preparing a print plate for a stamp having a suitable length.A process for preparing a stamp of the present invention comprises simple steps, and therefore the high-quality stamp can be promptly provided.
Abstract:
A cartridge containing a thermosensitive stencil original comprising a tape-formed thermosensitive stencil original which is to be perforated to create a print image, a pressing member for pressing the thermosensitive stencil original, and a cassette case having the pressing member disposed therein. The thermosensitive stencil original is also accommodated inside the cassette case so that the stencil original may be carried out from the cartridge. The mirror image of the desired print image is perforated onto the surface of the thermosensitive stencil original.
Abstract:
A knock-out type mechanical pencil has a supporting rod mounted with an eraser at its rear end and axially slidably engaged within the interior of a cylindrical knock-button. A tubularly cylindrical weight is axially slidably engaged around the supporting rod. A cylindrical magnet is axially magnetized and secured to the inner peripheral surface of the knock-button. An annularly inwardly raised guide portion is formed on the inner peripheral surface of the knock-button for guiding the weight to the axial line of the knock-button when the weight is axially slidably dropped downwardly toward the writing tip of the pencil. To protrude and fix an eraser from the rear end of the tubular cylindrical body, the rear end of the pencil is tilted downward. To automatically contain or retract the eraser in the knock-button, the writing tip of the pencil is directed downwardly in writing state. Thus, this mechanical pencil can stably perform an erasing operation with an eraser without any rocking motion of the eraser in axial direction nor rotation of the eraser.