摘要:
A method for producing an electron-emitting device includes forming a first conductive film on a side surface of an insulation layer including the side surface and a top surface connected to the side surface; forming a second conductive film from the top surface to the side surface and on the first conductive film; and etching the second electrically conductive film.
摘要:
A lanthanum boride film is deposited on a substrate by means of a sputtering method while moving the substrate and a target of lanthanum boride relative to each other in a state where the substrate and the target are arranged in opposition to each other. When a mean free path of sputtering gas molecules at the time of deposition is λ (mm) and a distance between the substrate and the target is L (mm), a ratio of L/λ is set to a value equal to or larger than 20. A value which is obtained by dividing a discharge power value by an area of the target is set to be in a range of from 1 W/cm2 or more to 5 W/cm2 or less.
摘要翻译:在基板和靶相对配置的状态下,通过溅射法在基板上沉积硼硅酸钡膜,同时相对于彼此移动基板和硼化镧靶。 当沉积时溅射气体分子的平均自由程为λ(mm),基板与目标之间的距离为L(mm)时,将L /λ的比设定为等于或大于 通过将放电功率值除以目标的面积而获得的值设定为1W / cm 2以上至5W / cm 2以下的范围。
摘要:
A method of manufacturing an electron-emitting device includes a first step of forming a conductive film on an insulating layer having an upper surface and a side surface connected to the upper surface via a corner portion so as to extend from the side surface to the upper surface and cover at least a part of the corner portion, and a second step of etching the conductive film. At the first step, the conductive film is formed so that film density of a portion on the side surface of the insulating layer becomes lower than film density of a portion on the corner portion of the insulating layer.
摘要:
An electron-emitting device is equipped with a pair of first electroconductive members arranged on a substrate with an interval between them, wherein the interval becomes narrower at an upper position distant from a surface of the substrate than at a position on the surface, and a peak of one of the pair of the first electroconductive members is higher than a peak of the other of the pair of the first electroconductive members, and further an electron scattering surface forming film including an element having an atomic number larger than those of elements constituting the first electroconductive members as a principal component is provided on a surface of the one of the first electroconductive members.
摘要:
Provided is a manufacturing method capable of manufacturing an electron-emitting device in which a variation in device current at the time of manufacturing is suppressed and thus uniformity thereof is high. The electron-emitting device includes a substrate, a first conductor, and a second conductor. The substrate is composed of: a member which contains silicon oxide as a main ingredient, Na2O, and K2O and in which a molar ratio of K2O to Na2O is 0.5 to 2.0; and a film which contains silicon oxide as a main component and is stacked on the member. The first conductor and the second conductor are located on the substrate. In a forming step and/or an activation step, a quiescent period (interval) of a pulse voltage applying repeatedly applied between the first conductor and the second conductor is set equal to or longer than 10 msec.
摘要:
In an electron-emitting device having a pair of electroconductors arranged on a substrate at an interval, a top of one electroconductor is higher than that of the other electroconductor and a groove extending from the interval region toward a position under a region where the one electroconductor is come into contact with the substrate is formed on the substrate. Deterioration of the electron-emitting device due to collision of charged particles is suppressed by the asymmetrical electron-emitting region, electron-emitting efficiency is improved, and a long life is realized.
摘要:
A substrate for an electron source to be used for forming the electron source, the electron source and an image forming apparatus in which the substrate has been used, and manufacturing method thereof. The substrate to form the electron source in which an electron emission device is disposed includes a substrate containing Na, a first layer wish SiO2 as a main component having been formed on the substrate, and a second layer containing electron conductive oxide. The electron source includes the substrate and the electron emission device disposed on the first layer or the second layer. The image forming apparatus includes the electron source and an image forming member to form an image with irradiation of electrons emitted from the electron source. According to a manufacturing method of the substrate for forming the electron source with which the electron emission device is formed, the first layer with SiO2 as its main component, and the second layer containing electron conductive oxide are formed on a substrate containing Na. The manufacturing method of an electron source includes a step in which the first layer with SiO2 as its main component, and the second layer containing electron conductive oxide are formed on a substrate containing Na, and a step of forming an electron emission device on the first layer or on the second layer.
摘要:
An electron-emitting device manufacturing method includes a first step of forming a conductive film on an insulating layer having an upper surface and a side surface connected to the upper surface via a corner portion so as to extend from the side surface to the upper surface and cover at least a part of the corner portion, and a second step of etching the conductive film in a film thickness direction. At the first step, the conductive film is formed so that film density of the conductive film on the side surface of the insulating layer becomes the same as or higher than film density of the conductive film on the upper portion of the insulating film.
摘要:
A method for producing an electron-emitting device includes forming an electrode above a top surface of an insulation layer including the top surface and a side surface connected to the top surface; forming a first conductive film on the insulation layer so as to be separated from the electrode and extend from the top surface to the side surface; forming a second conductive film on the first conductive film so as to extend from the top surface to the side surface; and etching the second conductive film.
摘要:
In an electron beam device employing an electron-emitting device in which a gate and a cathode are provided to sandwich a recess portion formed on an insulating member, electrons are scattered after the collision against the gate and then extracted, it is made possible to easily obtain stable electron emission characteristics and also to prevent the electron-emitting device from being deteriorated or being fractured due to overheating even when an excessive heat has been generated. The electron-emitting device includes the cathode having a protrusion 30 positioned astride the outer surface of the insulating member and the inner surface of the recess portion formed in the insulating member, and the gate including a layered structure of at least two electroconductive layers. A thermal expansion coefficient of the electroconductive layer which is arranged at a part facing to the protrusion is larger than that of the other electroconductive layer.