摘要:
The present invention provides a gas diffusion electrode capable of sufficiently preventing not only degradation of MEA during storage but also degradation of initial characteristics and durability during the time period from production to initial use, and a polymer electrolyte fuel cell including the gas diffusion electrode. The gas diffusion electrode includes a catalyst layer in which A1 representing a total mass of organic substance comprising alcohol, a partial oxide of the alcohol, a product of intramolecular dehydrogenation reaction of the alcohol, a product of intermolecular condensation reaction of the alcohol, a product of intermolecular condensation reaction between the alcohol and the partial oxide and a product of intermolecular condensation reaction of the partial oxide, E1 representing a total mass of carbon powder and G1 representing a total mass of cation exchange resin are controlled to satisfy {100×A1/(E1+G1)}≦0.05.
摘要:
The present invention provides a gas diffusion electrode capable of sufficiently preventing not only degradation of MEA during storage but also degradation of initial characteristics and durability during the time period from production to initial use, and a polymer electrolyte fuel cell including the gas diffusion electrode. The gas diffusion electrode includes a catalyst layer in which A1 representing a total mass of organic substance comprising alcohol, a partial oxide of the alcohol, a product of intramolecular dehydrogenation reaction of the alcohol, a product of intermolecular condensation reaction of the alcohol, a product of intermolecular condensation reaction between the alcohol and the partial oxide and a product of intermolecular condensation reaction of the partial oxide, E1 representing a total mass of carbon powder and G1 representing a total mass of cation exchange resin are controlled to satisfy {100×A1/(E1+G1)}≦0.05.
摘要:
An object of the present invention is to provide a catalyst-coated membrane suitable for achieving a polymer electrolyte fuel cell that sufficiently prevents a decrease in the initial characteristics and also exhibits sufficient cell performance for a long period of time and has excellent durability. In at least the cathode catalyst layer, the ratio (WP/WCat-C) of the weight of the polymer electrolyte (WP) to the weight of the catalyst-carrying carbon (WCat-C) is decreased from an innermost layer positioned closest to the polymer electrolyte membrane toward an outermost layer positioned farthest from the polymer electrolyte membrane. The ratio (WP/WCat-C) in the innermost layer is 0.8 to 3.0, and the ratio (WP/WCat-C) in the outermost layer is 0.2 to 0.6.
摘要:
An object of the present invention is to provide a catalyst-coated membrane suitable for achieving a polymer electrolyte fuel cell that sufficiently prevents a decrease in the initial characteristics and also exhibits sufficient cell performance for a long period of time and has excellent durability. In at least the cathode catalyst layer, the ratio (WP/WCat-C) of the weight of the polymer electrolyte (WP) to the weight of the catalyst-carrying carbon (WCat-C) is decreased from an innermost layer positioned closest to the polymer electrolyte membrane toward an outermost layer positioned farthest from the polymer electrolyte membrane. The ratio (WP/WCat-C) in the innermost layer is 0.8 to 3.0, and the ratio (WP/WCat-C) in the outermost layer is 0.2 to 0.6.
摘要翻译:本发明的目的是提供一种适用于实现充分防止初始特性降低的聚合物电解质燃料电池的催化剂涂覆膜,并且长时间表现出足够的电池性能并且具有优异的耐久性。 在至少阴极催化剂层中,聚合物电解质的重量比(W P P P C C) )相对于催化剂载体碳(W CatC-C)的重量从位于最靠近聚合物电解质膜的最内层朝向距离聚合物电解质膜最远的最外层降低。 最内层的比例(W / P / W Cat-C)为0.8〜3.0,比率(W / P / W / 最外层中的“Cat-C”)为0.2〜0.6。
摘要:
By using a gas diffusion layer for a fuel cell comprising a fabric comprising a warp thread and a weft thread which are made of carbon fiber, wherein the distance X between adjacent intersections where the warp and weft threads cross each other and the thickness Y of the fabric satisfy the equation: 1.4≦X/Y≦3.5, the present invention reduces the surface asperities of the substrate and prevents a micro short-circuit resulting from the piercing of the polymer electrolyte membrane of the fuel cell by the carbon fibers of the fabric so as to improve the characteristics of the fuel cell.In order to further prevent the piercing of the polymer electrolyte membrane by the carbon fibers of the gas diffusion layer substrate, the rough surface of the carbon fabric is smoothed by: (1) applying a clamping pressure of 1 to 20 kgf/cm2 to the contact area between each electrode and each conductive separator plate of the fuel cell; or (2) heating the gas diffusion layer surface before the gas diffusion layer is disposed onto the polymer electrolyte membrane.
摘要翻译:通过使用包括由碳纤维制成的包括经线和纬纱的织物的燃料电池用气体扩散层,其中,经线和纬线彼此交叉的相邻交点之间的距离X和 织物满足以下等式:1.4 <= X / Y <= 3.5,本发明减小了基板的表面粗糙度,并且防止了燃料电池的聚合物电解质膜被碳纤维刺穿导致的微短路 织物,以改善燃料电池的特性。 为了进一步防止高分子电解质膜被气体扩散层基材的碳纤维刺穿,碳纤维织物的粗糙表面通过以下方式进行平滑化:(1)施加1〜20kgf / cm·SUP > 2 SUP>到燃料电池的每个电极和每个导电隔板之间的接触面积; 或者(2)在将气体扩散层配置在高分子电解质膜上之前加热气体扩散层表面。
摘要:
By using a gas diffusion layer for a fuel cell comprising a fabric comprising a warp thread and a weft thread which are made of carbon fiber, wherein the distance X between adjacent intersections where the warp and weft threads cross each other and the thickness Y of the fabric satisfy the equation: 1.4≦X/Y≦3.5, the present invention reduces the surface asperities of the substrate and prevents a micro short-circuit resulting from the piercing of the polymer electrolyte membrane of the fuel cell by the carbon fibers of the fabric so as to improve the characteristics of the fuel cell. In order to further prevent the piercing of the polymer electrolyte membrane by the carbon fibers of the gas diffusion layer substrate, the rough surface of the carbon fabric is smoothed by: (1) applying a clamping pressure of 1 to 20 kgf/cm2 to the contact area between each electrode and each conductive separator plate of the fuel cell; or (2) heating the gas diffusion layer surface before the gas diffusion layer is disposed onto the polymer electrolyte membrane.
摘要翻译:通过使用包括由碳纤维制成的包括经线和纬纱的织物的燃料电池用气体扩散层,其中,经线和纬线彼此交叉的相邻交点之间的距离X和 织物满足以下等式:1.4 <= X / Y <= 3.5,本发明减小了基板的表面粗糙度,并且防止了燃料电池的聚合物电解质膜被碳纤维刺穿导致的微短路 织物,以改善燃料电池的特性。 为了进一步防止高分子电解质膜被气体扩散层基板的碳纤维刺穿,碳纤维织物的粗糙表面通过以下方式进行平滑化:(1)施加1〜20kgf / cm·SUP > 2 SUP>到燃料电池的每个电极和每个导电隔板之间的接触面积; 或者(2)在将气体扩散层配置在高分子电解质膜上之前加热气体扩散层表面。
摘要:
The present invention provides a catalyst-coated membrane and a membrane-electrode assembly that can easily and surely achieve a polymer electrolyte fuel cell having excellent durability, in which the decomposition/degradation of a polymer electrolyte membrane can be suppressed, and a decrease in initial characteristics can be prevented sufficiently for a long period of time even when the polymer electrolyte fuel cell is frequently started and stopped. In the catalyst-coated membrane that includes an anode catalyst layer, a cathode catalyst layer, and a hydrogen ion conductive polymer electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, a peripheral area of at least one of the anode catalyst layer and the cathode catalyst layer is provided with a decrease portion in which the mass of the electrode catalyst per unit area of the catalyst layer decreases from the inner side toward the outer side.
摘要:
In a conventional polymer membrane electrode assembly, particularly when operated for a long period of time, a portion of the polymer electrolyte membrane to be in contact with the gas diffusion layer has suffered significant degradation. In order to address this, in a membrane electrode assembly including a hydrogen ion conductive polymer electrolyte membrane, a pair of catalyst layers arranged on both surfaces of the polymer electrolyte membrane, and a pair of gas diffusion layers, each including a fibrous substrate, arranged on the outer surfaces of the catalyst layers, a thickness TA of a center portion that faces the catalyst layer and a thickness TB of a peripheral portion surrounding the center portion are set to satisfy a expression (1): 0.7≦TB/TA≦0.9.
摘要:
In a conventional polymer membrane electrode assembly, particularly when operated for a long period of time, a portion of the polymer electrolyte membrane to be in contact with the gas diffusion layer has suffered significant degradation. In order to address this, in a membrane electrode assembly including a hydrogen ion conductive polymer electrolyte membrane, a pair of catalyst layers arranged on both surfaces of the polymer electrolyte membrane, and a pair of gas diffusion layers, each including a fibrous substrate, arranged on the outer surfaces of the catalyst layers, a thickness TA of a center portion that faces the catalyst layer and a thickness TB of a peripheral portion surrounding the center portion are set to satisfy a expression (1): 0.7≦TB/TA≦0.9.
摘要:
A catalyst-coated membrane that includes an anode catalyst layer, a cathode catalyst layer, and a hydrogen ion conductive polymer electrolyte membrane interposed between the anode catalyst layer and the cathode catalyst layer, a peripheral area of at least one of the anode catalyst layer and the cathode catalyst layer is provided with a decrease portion in which the mass of the electrode catalyst per unit area of the catalyst layer decreases from the inner side toward the outer side.