摘要:
A clip-on eyepiece system that enables a single portable digital imager to be used in both handheld and device-mounted applications is disclosed. The system has a clip-on eyepiece assembly that includes an inverting or a non-inverting eyepiece, a clip-on bracket, a T-mount, and a magnet. The digital imager comprises a display, a mounting rail, a Hall-effect sensor, and a processor all configured to dynamically determine which type of eyepiece, if any, is attached, and to dynamically set system parameters to configure the digital imager for use in either a handheld or a mounted mode. A method for setting operational parameters when the user attaches or detaches the clip-on eyepiece assembly is also disclosed.
摘要:
Aerogel-based optical elements are disclosed. The aerogel-based optical elements have an aerogel member having at least one surface, and at least one optical surface disposed on the at least one aerogel member surface. The at least one optical surface comprises an electroformed metal or at least one glass sheet. The at least one optical surface can be transmissive, reflective, or both. Different types of aerogel-based optical elements are presented, along with various methods of making the aerogel-based optical elements.
摘要:
Systems and methods for dynamically controlling vergence and focus for a see-through head-mounted display (ST-HMD) used as part of an augmented reality (AR) system are disclosed. The ST-HMD (40) allows a user (30) to view left and right images (150L, 150R) through corresponding left and right eyepieces (104L, 104R) so that a single virtual object (150V) based on the right and left images as seen at a real object such as a screen (20). When the user moves relative to the real object, however, the vergence changes and the virtual object does not appear in focus at the real object. Changes in the vergence are compensated by tracking the user's head position with a tracking unit (350) and providing the tracking data to a controller (180). Based on the tracking data and the interpupilary distance (IPD) of the user, the controller calculates the offset (H) needed to be imparted to the images formed in the eyepieces to maintain the vergence of the virtual object at the real object even when the user's position changes relative to the real object.
摘要:
Threat detection systems and methods are disclosed that employ position-sensing photodiodes to locate a munitions flash within a field of view of a collection optical system. The flash is then located on a map of the monitored terrain, which map can be displayed to a system user. Processing electronics determine whether the flash is actually munitions-based or is from another non-threatening light source.
摘要:
A flashlight that utilizes an array of one or more light-emitting diodes (LEDs) as a light source, and a light pipe as a light homogenizer to generate a light beam capable of forming a uniformized light distribution at a given distance from the flashlight is disclosed. The LEDs may be all the same color, or some or all may be different colors. A switch, coupled to switching electronics coupled to the LED array, is used to change the state of the LED array to create a variety of different types of light beams, each of which provides relatively uniform and bright illumination at a given distance from the flashlight, wherein the given distance is selectable by adjusting an adjustable imaging lens.
摘要:
Threat detection systems and methods are disclosed that employ position-sensing photodiodes (PSDs) to locate a munitions flash within a field of view of a collection optical system. Image intensifiers are used to form intensified first and second focus spots from the focus spots formed by the collection optical system over two different wavelength bands. The intensified focus spots are then detected by corresponding PSDs. The flash is then located on a map of the monitored terrain, which map can be displayed to a system user. Processing electronics determine whether the flash is actually munitions-based or is from another non-threatening light source.
摘要:
Aerogel-based optical elements are disclosed. The aerogel-based optical elements have an aerogel member having at least one surface, and at least one optical surface disposed on the at least one aerogel member surface. The at least one optical surface comprises an electroformed metal or at least one glass sheet. The at least one optical surface can be transmissive, reflective, or both. Different types of aerogel-based optical elements are presented, along with various methods of making the aerogel-based optical elements.
摘要:
A compact work light that generates a light beam having high brightness and high illumination uniformity is disclosed. The work light includes a housing that houses a light source, a light homogenizer and an imaging lens in an operational relationship. The housing is attached to an adjustable mount, which can be attached to a fixed region such as wall, or to a movable support member such as a lamp base. The light source generates light that is uniformized by the light homogenizer. The homogenized light is then imaged by the imaging lens as a highly uniform, bright beam spot having a sharp boundary. The beam spot is formed at a selectable distance from the work light by varying the imaging lens and/or the adjustable mount. The work light is useful for a variety of industrial, professional and personal applications, including but not limited to a reading light, a dentist light, a head lamp, a head light and an optical projector.
摘要:
A head-mounted display system for the viewing of video or other sources of imagery which comprises a mechanism allowing for a wide range of adjustments for presenting the display to the wearer. The head mounted display device is supported by a headband or other support structure with three independent adjustments giving the wearer a wide range of adjustment capability. One pivot adjustment is in a location in proximity with the ear, the other pivot adjustment is located in close proximity with the pupil of the eye, and a third adjustment allows for the display unit to be adjusted in or out from the wearers head so as to permit convenient use with glasses. The mechanism allows the display to be located within or outside the wearer's primary field of view by utilizing these multiple adjustment locations for the system. The display unit consists of viewing optics, fold mirrors, liquid crystal display devices, and a backlight unit. By folding the light inward to nearly co-located display devices, a single backlight unit can be used.