Abstract:
A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
Abstract:
Method and equipment to control operating temperature of an air compressor. A compressor element compresses air and oil and supplies it to an oil separator. In the separator, the air and oil are separated. Oil is led to a circulating pipe and returned to the compressor element. When necessary, at least some of the oil flowing in the oil circulating pipe is supplied to cooling, which is used for controlling operating temperature of the compressor such that it is as low as possible, but nevertheless so high that no condensation point is reached. The amount of oil to be supplied to cooling is controlled by a thermostatic valve based on a change in dimension of a controlling element such that dimensions of the controlling element are changed by an external command.
Abstract:
In a lubricant-cooled gas compressor (10) the temperature of separated lubricant returned to the air-side (11) is monitored by a thermostatically controlled restrictor valve (22) which minimises the flow of returned lubricant when temperature is low as on start up or when running on reduced load but increases the flow as the lubricant temperature increases. This will minimise he condensation of water from indrawn air when the temperature of the compressed air is too low to retain the water as vapour, so that the returned lubricant is contaminated with water which will damage the moving components of the air-end.
Abstract:
A compressor includes a shell, a first temperature sensor, a second temperature sensor, and a control module. The shell includes a motor, a compression mechanism and a lubricant sump. The first temperature sensor is at least partially disposed within the shell and configured to measure a first temperature of a lubricant at a first position. The second temperature sensor is at least partially disposed within the shell and configured to measure a second temperature of the lubricant at a second position that is vertically higher than the first position. The control module is in communication with the first and second temperature sensors and configured to determine a first difference between the first temperature and the second temperature. The control module is configured to determine whether a liquid level of the lubricant in the lubricant sump is below a predetermined level based on the first difference.
Abstract:
A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
Abstract:
A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
Abstract:
The present application relates to a plunger pump, and the technical field of high-pressure media transport equipment. The plunger pump comprises a fixed component, a motion component and a fault diagnosis module, the motion component is provided on the fixed component, and the motion component is movable relative to the fixed component. The fault diagnosis module comprises a temperature sensing component and a processing unit, the fixed component is provided with one or more temperature detection holes, the temperature sensing component is at least partially located in the one or more temperature detection holes, and the temperature sensing component is contactable to lubricating oil flowing through the motion component; the processing unit is connected to the temperature sensing component, and the processing unit performs monitoring and fault diagnosis on the plunger pump based on a temperature value sensed by the temperature sensing component.
Abstract:
A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
Abstract:
In a lubricant-cooled gas compressor (10) the temperature of separated lubricant returned to the air-side (11) is monitored by a thermostatically controlled restrictor valve (22) which minimises the flow of returned lubricant when temperature is low as on start up or when running on reduced load but increases the flow as the lubricant temperature increases. This will minimise he condensation of water from indrawn air when the temperature of the compressed air is too low to retain the water as vapour, so that the returned lubricant is contaminated with water which will damage the moving components of the air-end.
Abstract:
An apparatus and method of controlling air compressors is disclosed. In this invention, an air compressor is started to supply compressed air to an air tank. A temperature sensor senses the lubrication oil temperature of the compressor, and outputs a temperature signal to the controller, which compares the sensed oil temperature with a preset reference temperature. When the sensed oil temperature is not higher than the preset reference temperature, a pressure sensor senses the compressed air pressure within the tank, and outputs a pressure signal to the controller. When the compressed air pressure is higher than a minimum pressure, the controller lowers the frequency of a drive signal for the air compressor and operates the air compressor at a low rpm. When the compressed air pressure is higher than a preset maximum pressure, the controller operates the air compressor at a minimum rpm and partially discharges compressed air from the tank into the atmosphere. When the compressed air pressure is higher than a preset stop pressure, the controller stops the operation of the air compressor. When the compressed air pressure is not higher than the minimum pressure, the controller raises the frequency of the drive signal for the compressor, thus smoothly operating the air compressor and lengthening the expected life span of the air compressor.