Abstract:
Method for determining, with geodesic precision, the position of a target point on a target object by using a geodesic measuring device, said method comprising a sighting device which comprises at least one objective unit that defines an optical line of sight, an electronic distance measuring unit, and a thermal imaging camera for recording a thermal image in the direction of the optical line of sight. An angle measuring function is provided for recording the line of sight alignment, and a control unit is provided for controlling the angle measuring function, the thermal imaging camera. In a thermal imaging mode when a measurement procedure is triggered, position data of the sighted target point which are determined in said measurement procedure are linked to temperature information which is read out from the thermal image for the target point at which the line of sight is aimed.
Abstract:
The invention belongs to the field of measuring tools, particularly relates to a pointer-type angle measuring device with wireless power supply for lighting for measuring angle state of an object. The invention includes a housing, a dial, a pointer and an electronic circuit. Wherein, the electronic circuit includes a wireless power supply circuit and a wireless power receiving and lighting circuit, and the wireless power receiving and lighting circuit is set on the pointer. The invention is characterized in that the pointer can illuminate, and the invention is convenient for people to use in a low light environment, to measure angle of the object.
Abstract:
Method for determining, with geodesic precision, the position of a target point on a target object by using a geodesic measuring device, said method comprising a sighting device which comprises at least one objective unit that defines an optical line of sight, an electronic distance measuring unit, and a thermal imaging camera for recording a thermal image in the direction of the optical line of sight. An angle measuring function is provided for recording the line of sight alignment, and a control unit is provided for controlling the angle measuring function, the thermal imaging camera. In a thermal imaging mode when a measurement procedure is triggered, position data of the sighted target point which are determined in said measurement procedure are linked to temperature information which is read out from the thermal image for the target point at which the line of sight is aimed.
Abstract:
“Path-enhanced” multimedia (PEM) data may be viewed, modified, or interacted with according to user selected views which determine the manner in which at least a portion of the PEM data is displayed. The PEM data is stored in a data structure as a scrapbook object including first data object types corresponding to the PEM data and second object types corresponding to the different view types. The scrapbook object data structure lends itself to displaying portions of the PEM data according to selected views that correspond to a particular time and place or to a particular time ordered sequence of locations (i.e., a particular path segment) and/or can be enhanced with other multimedia content related to that time and place or to that path segment, thereby providing a more interesting and effective display of the “path-enhanced” recorded events. For example, the time and location of a particular point on the path may be used to locate and append other recorded sounds and images associated with that time and/or that location, to thereby provide an enhanced presentation of a trip or other path-oriented experience. Moreover, the data defining any such associated path may also be edited to thereby define a new or modified path.
Abstract:
Systems, methods, and devices are disclosed for predictive shimming of large structures. Systems may include a remote device configured to move along a first path relative to a first vehicle structure. The remote device may be configured to move a sensor device along a plurality of measurement points included in the first path. A base device may be configured to identify a position of the sensor device at each measurement point. The base device may be configured to generate measurement data including a first plurality of measurements identifying at least one structural dimension of a first surface of the first vehicle structure. A controller may be configured to control operation of the base device and the remote device based on engineering data associated with the first vehicle structure. The controller may be further configured to determine at least one shim dimension associated with the first surface.
Abstract:
A method for preparing a 3-D impression or replica of small objects. It is particularly aimed at the dental field and provides improved optical texture of an impression or replica of a small object to enable imaging by photogrammetry. A composition useful in the method comprises a liquid curable polymer; macroparticles having a size greater than about 1 μm in diameter and microparticles present in a size range of less than about 1 μm such that the macroparticles and microparticles are present in a ratio in the range of between 5:1 and 15:1 (by volume); wherein the impression or replica formed from the composition has a surface particle distribution effective to allow imaging by photogrammetry.
Abstract:
A composition, apparatus and method for preparing a 3-D impression or replica of small objects. It is particularly aimed at the dental field and provides improved optical texture of an impression or replica of a small object to enable imaging by photogrammetry. The composition comprises a liquid curable polymer; macroparticles having a size greater than about 1 μm in diameter and microparticles present in a size range of less than about 1 μm such that the macroparticles and microparticles are present in a ratio in the range of between 5:1 and 15:1 (by volume); wherein the impression or replica formed from the composition has a surface particle distribution effective to allow imaging by photogrammetry.
Abstract:
nullPath-enhancednull multimedia (PEM) data may be viewed, modified, or interacted with according to user selected views which determine the manner in which at least a portion of the PEM data is displayed. The PEM data is stored in a data structure as a scrapbook object including first data object types corresponding to the PEM data and second object types corresponding to the different view types. The scrapbook object data structure lends itself to displaying portions of the PEM data according to selected views that correspond to a particular time and place or to a particular time ordered sequence of locations (i.e., a particular path segment) and/or can be enhanced with other multimedia content related to that time and place or to that path segment, thereby providing a more interesting and effective display of the nullpath-enhancednull recorded events. For example, the time and location of a particular point on the path may be used to locate and append other recorded sounds and images associated with that time and/or that location, to thereby provide an enhanced presentation of a trip or other path-oriented experience. Moreover, the data defining any such associated path may also be edited to thereby define a new or modified path.