Abstract:
An electromagnetic switching-valve position detection system includes: an electric current control circuit in which an electric current from a power supply is smoothed to be a direct current, and is turned into a pulse wave alternating current, the pulse wave alternating current being transmitted to the secondary side and outputted as a smoothed direct current; a carrier wave generator configured to superimpose a high frequency carrier wave for position detection on a signal wave of the electric current command; and a detecting unit configured to extract a carrier wave frequency component for the position detection from a voltage feedback signal of the solenoid, detect a voltage amplitude from the frequency component, and obtain an amplitude signal. The control unit has a position determining unit configured to determine a position of the valve spool, and a determination circuit configured to output a valve position signal based on the determination signal.
Abstract:
A DC solenoid coil current controller includes a rectifier, pulse width modulator, and power driver. The rectifier inputs an alternating current signal and a direct current signal, and outputs a rectified signal using at least one of the alternating current signal and the direct current signal. The pulse width modulator outputs a pulse width modulated signal in response to the rectified signal. The power driver controls a DC solenoid coil using the pulse width modulated signal, thereby enabling a direct current DC solenoid coil to be controlled in response to the alternating current signal. A method of controlling current to a DC solenoid coil is also disclosed.
Abstract:
The magnetic coil driving circuit of the magnetic contactor according to the present invention comprises a semiconductor switch configured to open or close a circuit for magnetizing or demagnetizing a magnetic coil; a pulse width modulation unit configured to output a pulse signal as a control signal for turning on or off the semiconductor switch; a control unit configured to output a control signal for changing a pulse width of the pulse signal to the pulse width modulation unit; and a temperature detection and protection unit configured to detect a temperature inside the magnetic contactor, output an output signal for turning off the semiconductor switch when the temperature exceeds an allowable temperature, and control the semiconductor switch by the pulse signal from the pulse width modulation unit when the temperature is within the allowable temperature.
Abstract:
An electromagnetic-valve controller includes a control switch, a control portion regulating a supply current supplied to the electromagnetic valve by controlling a drive of the control switch and controlling to open or close the electromagnetic valve, and a current detection portion detecting the supply current. The control portion controls the drive of the control switch based on a detection result of the current detection portion. The control portion controls the drive of the control switch by using a first pulse signal having a duty ratio that is variable, in a closed period. The control portion controls the drive of the control switch by using a second pulse signal maintaining the supply current to be constant so as to maintain the electromagnetic valve to be in the fully closed state, in a closed-state maintaining period.
Abstract:
A constant-current controller that supplies a constant current to an inductive load. This controller comprises an electric control circuit module. The electric control circuit module comprises a primary switch and a secondary switch. During a time interval in which the primary switch is closed (ton), the secondary switch is open and the voltage across the inductive load is equal to the source voltage (Vs). At time ton until the end of a time interval (T), zero volts appears across the inductive load. During this interval, current continues to flow as supplied by the energy stored in the inductance. The periodic current in the inductive load becomes constant with a sufficiently large PWM switching frequency and is dependent upon the parameters of the control circuit and the duration of ton.
Abstract:
A current control device capable of performing widely applicable failure detection without a motor rotation speed sensor is provided. A current control semiconductor element includes, on a same semiconductor chip, a transistor that drives load, a current detection circuit that detects current of the load, a compensator that calculates an on-duty of the transistor from a current command value and a current value output from the current detection circuit, and a PWM timer that generates a pulse turning on the transistor on the basis of the on-duty. A microcontroller sends the current command value to the current control semiconductor element, receives the current value output from the current detection circuit and the on-duty output from the compensator from the current control semiconductor element, and detects failure of the current control semiconductor element on the basis of the received current value and on-duty.
Abstract:
A procedure for controlling actuators within an on-board power system, which provides different operating voltages and temporal on-board power voltage changes. The actuator or actuators are controlled with different pulse-width modulated control signals, whereby the pulse-width and the cycle duration of the control signals can be adjusted independent of each other and are adjusted independent of the actually applied on-board power voltage. Control signals for the actuators can be specified by a control unit. The actuator or actuators can be controlled with the aid of the control unit by different pulse-width modulated control signals, whereby the pulse-width and the cycle duration of the control signals can be adjusted independent of each other; and the control unit provides devices for detecting the actually applied on-board power voltage and driver units.
Abstract:
Method in which the current is measured inside an integrated PWM control circuit using at least one A/D converter which is likewise integrated in the circuit is described. The PWM controller is provided for the purpose of driving inductive loads and is arranged, in particular, in an electronic circuit of an electronic controller for a motor vehicle braking system. Before determining the actual current of the PWM controller, which is determined using the at least one A/D converter, the current is smoothed using a low-pass filter. A circuit arrangement for carrying out the above method and its use in electronic motor vehicle control systems is also described herein.
Abstract:
A current control device capable of performing widely applicable failure detection without a motor rotation speed sensor is provided. A current control semiconductor element includes, on a same semiconductor chip, a transistor that drives load, a current detection circuit that detects current of the load, a compensator that calculates an on-duty of the transistor from a current command value and a current value output from the current detection circuit, and a PWM timer that generates a pulse turning on the transistor on the basis of the on-duty. A microcontroller sends the current command value to the current control semiconductor element, receives the current value output from the current detection circuit and the on-duty output from the compensator from the current control semiconductor element, and detects failure of the current control semiconductor element on the basis of the received current value and on-duty.
Abstract:
One embodiment relates to a control system. In one embodiment, a control system is configured to drive a load based on a set-point of the load, a measured load characteristic and a supply voltage of the load. The controller is configured to determine a duty cycle based on the load characteristic, the set-point, and the supply voltage. The controller is further configured to drive the load in response to the duty cycle.