Abstract:
A surface light source device (2) includes a plurality of electron sources (20), a plurality of magnetic coils (201), and an anode (22). Each electron source includes two cathodes (203) and at least one filament (202). The two cathodes face to each other and define therebetween a space (200) having a first opening (207) and a second opening (208). The second opening faces to and is larger than the first opening. The at least one filament is located at the second opening and is configured for emitting electrons to escape the space from the first opening. Each magnetic coil is located at one second opening. The anode includes a transparent electrically conductive layer (222) and a phosphorescent layer (221). The phosphorescent layer faces towards the plurality of electron source. The present surface light source device can achieve high brightness and is environmentally friendly.
Abstract:
Excimers are formed in a gas (30,130) by applying a pulsed potential between a first electrode (14,114) and a counter electrode (26, 126) so that corona discharge occurs, substantially without arcing, when the potential is on. The pulses or on-times of the potential desirably are about 100 microseconds or less. Use of a pulsed potential provides greater efficiency than a constant potential. Where the excimer-forming gas is a pure inert gas, the gas desirably contains less than 10 ppm water vapor.
Abstract:
A light source has a rear glass substrate and a front glass substrate having a plate surface disposed in facing relation to a principal surface of the rear glass substrate. The plate surface of the front glass substrate is coated with a phosphor. A two-dimensional array of electron emitters is disposed on the principal surface of the rear glass substrate. A space defined between the rear glass substrate and the front glass substrate is filled with a gas. The gas may be an Hg (mercury) gas or an Xe (xenon) gas.
Abstract:
In a gas discharge tube in accordance with the present invention, a side tube is formed from a metal, the outer periphery of the stem is provided with a joint portion made of a metal, and the latter is joined to a metal-made joint portion of the side tube by welding, whereby the assembling is made easier by welding, while the gas discharge tube itself can attain smaller dimensions. Also, since the side tube is small and made of a metal, its handling improves greatly. Further, since side tube is formed from a metal, the gas discharge tube is encouraged to have a wider range of processed forms and attains a prospect for mass production.
Abstract:
In a gas discharge tube in accordance with the present invention, one or both of the inner wall face and outer wall face of a side tube body are provided with a coating made of a glass material or ceramics. As a result, the side tube body can be made of various materials regardless of properties of the gas filling the inside, whereby the gas discharge tube can have a wider range of processed forms and smaller dimensions at the same time, and its mass production can freely be carried out.
Abstract:
Excimers are formed in a high pressure gas by applying a potential between a first electrode (14, 214) and a counter electrode (25, 226) so as to impose an electric field within the gas, or by introducing high energy electrons into the gas using an electron beam. A phosphor for converting the wavelength of radiation emitted from the formed excimers is disposed within the gas and outside a region (62, 162) where the excimers are expected to be formed, so as to avoid degradation of the phosphor.
Abstract:
A pixel structure of display apparatus includes a first substrate and a second substrate. Several cathode structure layers are disposed on the first substrate. The second substrate is a light-transmissive material. Several anode structure layers are disposed on the second substrate, and are light-transmissive conductive materials. The first substrate faces to the second substrate, so that the cathode structure layers are respectively aligned with the anode structure layers. A separation structure is disposed between the first substrate and the second substrate, for respective partitioning the anode structure layers and the cathode structure layers to form several spaces. Several fluorescent layers are respectively disposed between the anode structure layers and the cathode structure layers. A low-pressure gas is respectively filled into the spaces. The low-pressure gas has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
Abstract:
A discharge field emission device including a cathode an anode, a conductive gas, and a phosphor is provided. The conductive gas is disposed between the cathode and the anode for inducing electrons from the cathode, wherein the conductive gas has a gas pressure between 10−1 torr and 10−3 torr. In addition, the phosphor is disposed on the moving path of the electrons to react with the electrons and emit light. The discharge field emission device has the advantages of high luminescence efficiency and low cost. A light source apparatus and a display apparatus applying the discharge field emission device are also provided.
Abstract:
In a gas discharge tube in which a sealed envelope at least a part of which transmits light is filled with a gas, and electric discharge is generated between anode and cathode sections disposed within the sealed envelope, so as to emit predetermined light outside from the light-transmitting part of the sealed envelope, the anode section is mounted on an insulating anode support member, an insulating electrode support member having an opening for exposing the anode section is mounted on a surface surrounding the anode section, a focusing electrode having a focusing opening projecting toward the anode section is further mounted at the front face of the opening, and the cathode section is disposed on the anode support member or focusing electrode support member so as to be spaced from the focusing opening.
Abstract:
In the gas discharge tube of the present invention, for elongating the life of the discharge tube itself while lowering the assembling temperature, a side tube itself is formed from glass, and a metal is employed in a joint between a stem and the side tube. Namely, a metal-made first peripheral portion provided in the stem and a metal-made second peripheral portion provided in the side tube are utilized in the joint. As a result, the discharge tube itself can be made smaller.