Abstract:
An optical scanning device performs sequential scanning passes. Individual pixels are scanned in response to a clock whose frequency is dithered in repeatable cycles to reduce electro-magnetic interference, and scanning passes are coordinated with the repeatable cycles.
Abstract:
Methods, systems, and apparatus can provide channel scanning. In various examples, a channel scanning module can instruct scanning of multiple channels within a wideband frequency range by assigning channels to one or more demodulators to attempt to lock onto a signal at the assigned channel. In other examples, a channel scanning module can instruct scanning for downstream channels by assigning channels to multiple narrowband tuners and multiple demodulators to attempt to lock onto a signal on the assigned channel.
Abstract:
An image forming apparatus comprises a signal generator generating a clock signal associated with image forming in a main-scanning direction, an image forming unit including a write unit performing the image forming in the main-scanning direction on a paper relatively moving in a sub-scanning direction, in synchronization with the clock signal generated at the signal generator, an image processor converting input image data into data for driving the write unit, a magnification setting unit setting a magnification of an image in the main-scanning direction associated with a position of the image in the sub-scanning direction, a controller controlling to generate the clock signal of a frequency corresponding to a relative position in the sub-scanning direction on the basis of the magnification set at the magnification setting unit when the write unit performs the image forming on the basis of the data for driving converted at the image processor.
Abstract:
According to one embodiment, if it is designated by operation of a control panel that a printed halftone image for test is defective, a number of revolutions of a polygon mirror is finely adjusted by a predetermined rate and a frequency of a serial data signal is finely adjusted by the rate.
Abstract:
A method of producing an image that can eliminate an fθ lens is provided. This method of producing an image includes producing the image from a plurality of dots with varying intervals that are to be formed by linearly scanning an image forming surface with light that has been modulated using image data for producing by a polygon mirror that rotates at a constant angular velocity, and generating, before the producing the image, the image data for producing to form the image with the plurality of dots with varying intervals from original image data that forms a target output image with a plurality of dots with constant intervals. The step of generating the image data for producing includes setting a state of a first dot included in the plurality of dots with varying intervals at a state of a second dot that is included in the plurality of dots with constant intervals obtained from the original data and is at a position that is close to a position of the first dot.
Abstract:
A frequency modulation device for use in an image forming apparatus. The image formation apparatus includes an image carrier and a laser device for scanning the image carrier along a plurality of scan lines. Each scan line is divided into segments having segment boundaries in which the same segment boundary in adjacent scan lines are offset. The frequency modulation device generates frequency data for use in modulating the input image data, which is utilized by the laser device to scan the image carrier, which permits output of an electrophotograph of high image quality by suppressing segment boundaries caused by moiré fringes or color shifting to below a level at which such boundaries are not visually detectable.
Abstract:
A pixel clock generating apparatus comprises a data offset circuit and a pixel generator. The data offset circuit defines multiple data blocks, each data block consisting of a predetermined number of successive clocks, and produces phase data for each data block. The phase data represents an amount and a direction of phase shift to be carried out for a certain clock in each data block. The pixel generator receives the phase data from the data offset circuit and generates a phase-shifted pixel clock a predetermined number of times in each data block based on the phase data.
Abstract:
A pixel clock generating apparatus includes a data offset circuit and a pixel generator. The data offset circuit defines multiple data blocks, each data block consisting of a predetermined number of successive clocks, and produces phase data for each data block. The phase data represents an amount and a direction of phase shift to be carried out for a certain clock in each data block. The pixel generator receives the phase data from the data offset circuit and generates a phase-shifted pixel clock a predetermined number of times in each data block based on the phase data.
Abstract:
A scanning operation is synchronized with the motion of a scan mechanism. Encoder signals indicative of a position of the scan mechanism relative to a scan platen or an object being scanned are received. These encoder signals may include a single channel phase signals are channel A and channel B phase signals. Transitions of the encoder signals are detected. Scan pulses for triggering a scan operation by a scan element are generated based on transitions of the encoder signals. Differences in the encoder signal resolution and a desired scan resolution are compensated for in the generation of the scan pulses. A transfer signal is generated in synchronization with the scan pulses for controlling output of data from the scan element. Variations of the velocity of the scan mechanism cause variations of the frequency at which the scan pulses are generated. Variations in the velocity of the scan mechanism are accounted for during this synchronization by varying the duration of the transfer state of the transfer signal in relation to the variations of the scan pulse frequency. The duration of the exposure state of transfer signal is kept constant, ensuring a constant exposure time for the scanning device.
Abstract:
The relationship between first and second side images is evaluated to determine how the position of the paper and/or the size and arrangement of an image can be manipulated to compensate for paper shrinkage caused by fusing. Show through is reduced by performing setup to adjust a pixel clock frequency and/or a photoreceptor speed, determining a residual magnification error, determining margin shifts to compensate for the residual magnification error, and applying the margin shifts. Paper shrink effects on registration can be compensated for using determinations made during a typical printer setup. Show through errors can be reduced without using a paper conditioner to pre-shrink or re-wet the paper. In simplex and duplex printing, the show through errors worsen as the image moves away from the registration edge. Using information obtained during setup, a margin shift is determined that results in a significant reduction in the maximum show through for each image.