Abstract:
Useful as a catalyst component for polymerizing olefin is the transition metal compound of the present invention represented by Formula (I): wherein M represents a transition metal compound of the fourth group in the periodic table; X represents a &sgr; bonding ligand; Y represents a Lewis base; T represents a group containing a &sgr; bonding atom; E is a specific group containing an atom which can coordinate with M via a lone pair; q is 1 or 2 and represents [(valency of M)−2]; r represents an integer of 0 to 3; R1 to R4 represent a hydrogen atom, a halogen atom, a hydrocarbon group, a halogen-containing hydrocarbon group, a silicon-containing group or a hetero atom-containing group.
Abstract:
The present invention relates to transition metal organometallic compounds with an indenyl ligand attached in position 2 and fused in position 5,6, to a process for the production thereof and to the use thereof as catalysts for the (co)polymerization of olefinic and/or diolefinic monomers.
Abstract:
A solid self-supported cycloalkadienyl catalyst component is disclosed that includes: (i) a mixed metal alkoxide complex which is the reaction product of a magnesium alkoxide or aryloxide and at least one group IVB metal-containing alkoxide or aryloxide; and (ii) Cp, where Cp is a cyclic or polycyclic hydrocarbon having from 3-30 carbon atoms. A self-supported hybrid catalyst also is disclosed which contains the above components (i) and (ii), as well as (iii) a Ziegler-Natta catalyst species. A method of making the self-supported cycloalkadienyl catalyst and the self-supported hybrid catalyst and a method of polymerizing olefins using the catalysts also are disclosed. The catalysts are capable of producing polyolefins in high yield having a broad molecular weight distribution, or a bimodal distribution.
Abstract:
Titanium complexes comprising a 3-aryl-substituted cyclopentadienyl ring or substituted derivative thereof and at least one additional aryl substituent on the cyclopentadienyl ring, polymerization catalysts, and olefin polymerization processes using the same are disclosed.
Abstract:
The present invention relates to organometallic compounds of transition metals with an indenyl ligand bonded in the 2-position and substituted in the 1,3-position, a process for their production, and their use as catalysts for the (co)polymerization of olefinic and/or diolefinic monomers.
Abstract:
A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
Abstract:
The present invention provides a Ziegler-Natta catalyst useful in solution processes for the polymerization of olefins having a low amount of aluminum and magnesium. The catalysts of the present invention have a molar ratio of magnesium to the first aluminum component from 4.0:1 to 5.5:1 and molar ratio of magnesium to transition metal from 4.0:1 to 5.5:1.
Abstract:
This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and a treated solid oxide compound.
Abstract:
This invention relates to metallocene catalyst compositions which are highly active for the polymerization of olefins, particularly prochiral &agr;-olefins. The catalyst compositions contain at least one metallocene, and least one activator and a support that has been fluorided using a fluoride containing compound.
Abstract:
A ligand useful to form a metallocene olefin polymerization catalyst comprises: wherein at least R3 and R4 are substituents having at least a bulk of a t-butyl group and, optionally, wherein R1 or R2 may be a bulky substituent group.