Abstract:
A refining process includes steps of subjecting crude caprolactam to a first evaporative crystallization and a first solid-liquid separation to obtain a first caprolactam crystal and a first crystallization mother liquor; washing the first caprolactam crystal to obtain a second caprolactam crystal; optionally concentrating the first crystallization mother liquor to perform a second evaporative crystallization and a second solid-liquid separation to obtain a third caprolactam crystal and a second crystallization mother liquor; subjecting the third caprolactam crystal to a second washing to obtain a fourth caprolactam; optionally concentrating the second crystallization mother liquor to perform thermostatic crystallization, performing separation to obtain a fifth caprolactam crystal and a third crystallization mother liquor; washing the fifth caprolactam crystal to obtain a sixth caprolactam crystal; and subjecting the second caprolactam crystal to a hydrogenation reaction.
Abstract:
The present invention relates to a process for purifying caprolactam from solutions of crude caprolactam by a direct treatment with one or more alkaline compounds of polyvalent metals, preferably bivalent and trivalent, without resorting to organic solvent extraction as used in the usual purification process. A further subject of the present invention is a facility devoid of a unit for organic solvent extraction and designed to carry out the caprolactam purification process described herein.
Abstract:
A method for preparing caprolactam by using a microreactor under Lewis acid catalysis, wherein a hydroxyl group in a cyclohexanone oxime is activated to obtain a cyclohexanone oxime sulfonates intermediate, then rearranged under Lewis acid catalysis to prepare the caprolactam. The method of this invention has a simple process and a high operation safety and selectivity, the reaction condition is mild, an efficient reaction can take place even at room temperature, the reaction time is short, the conversion of the cyclohexanone oxime can reach 100% within a short time, the selectivity of the caprolactam can reach 99%, the energy consumption is greatly reduced in the premise of maintaining a high yield, and the production cost is reduced, being an efficient and green and environmentally friendly method of for synthesizing the caprolactam.
Abstract:
A method for producing a high purity, high quality amide compound, particularly a lactam. An amount of each of a halide, an aldehyde compound, an alcohol compound and a nitrile compound contained in a solution recycled into an oxime-forming step is controlled to an amount of 0.4 mol % or less based on the ketone as a starting material. One or more of a ketone, an oxime and an amide compound are purified by hydrogenation and/or crystallization for eliminating impurities containing a double bond. A content of impurities having a cyclic bridge structure is controlled using a cycloalkanone purified by recrystallization.
Abstract:
A process for producing a high purity caprolactam is disclosed in which a crude caprolactam obtained by a catalytic rearrangement of cyclohexanone oxime is subjected(1) to mixing, while stirring, with at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons to form a liquid-liquid, two-layer liquid mixture, and then crystallizing caprolactam out of the liquid mixture;(2) to mixing with both at least one hydrocarbon selected from the group consisting of aliphatic hydrocarbons and alicyclic hydrocarbons, and water to form a liquid mixture, separating the liquid mixture into a hydrocarbon layer and a water layer, and then recovering caprolactam from the water layer; or(3) to distillation in the co-presence of at least one aliphatic saturated hydrocarbon of 10 to 18 carbon atoms.
Abstract:
Disclosed is a method for selectively deactivating catalytically active sites which occur only on the surface of a zeolite of boralite catalyst. Active sites occurring on the interior of the pores are masked by saturating the catalyst with an organic compound which fills substantially the whole of the catalyst pore volume. The catalyst so treated is then exposed to a deactivating agent, such as a solution of an alkali metal salt which is substantially immiscible with, substantially insoluble in, and which is otherwise unreactive to said pore-filling compound. The catalyst is then treated to drive off the pore-filling compound, yielding a catalyst selectively deactivated only on the external surface, but which is not deactivated within the pores. The treatment enables the catalyst to be used for e.g. hydrocarbon conversion for long time periods without carbon buildups around the pore entrances, which buildup would otherwise either restrict entry into the pores by reactants or exit therefrom by product.
Abstract:
The present disclosure discloses a method for preparing caprolactam including: (1) contacting cyclohexanone oxime with a catalyst to carry out reaction in the presence of ethanol and under the condition of gas phase Beckmann rearrangement reaction of cyclohexanone oxime; (2) separating the reaction product obtained in step (1) to produce an ethanol solution of crude caprolactam, and then separating the ethanol solution of crude caprolactam to obtain ethanol and crude caprolactam; (3) removing impurities with boiling points lower than that of caprolactam in the crude caprolactam to obtain a light component removal product; (4) mixing the light component removal product with a crystallization solvent to carry out crystallization and solid-liquid separation to obtain a crystalline crystal; (5) subjecting the crystalline crystal to a hydrogenation reaction; wherein the crystallization solvent contains 0.1-2 wt % of ethanol.
Abstract:
Disclosed herein is an efficient, economical, industrially advantageous, straight-through process for the preparation of cyclic amides, also referred as lactams, in substantially pure form and high yield, from the corresponding cyclic ketones and a hydroxylammonium salt, using a combination of amphoteric metal oxide or amphoteric masked metal oxide and a base.