摘要:
A tripping coil for a circuit breaker, wherein the circuit breaker is designed to carry high load currents. The tripping coil includes a coil having a first winding and a second winding, a permanent magnet, a return spring, an armature and an actuator rod. The first winding and the permanent magnet produce a magnetic flux to urge and hold the armature into a biased position. The second winding produces a magnetic flux which urges the armature into an unbiased position. The return spring also exerts a force on the armature urging the armature into the unbiased position. The actuator rod is fixed to the armature, and interacts with the circuit breaker such that the circuit breaker is tripped when the armature moves into the unbiased position.
摘要:
A magnetically latching switch assembly adapted for use with a motor including first and second serially connected coils wound around a frame to generate oppositely directed magnetic flux through the frame. The coils are arranged so that for the normal run current of the motor, the net magnetic flux is sufficient to magnetically latch the switch against the restoring force of a spring. When the motor is stalled, the increased current is sensed and a portion of the current is diverted from one of the coils to reduce the net magnetic flux and terminate the latching effect. Current sensing and diverting is accomplished by a diode connected across the one coil.
摘要:
An electronic circuit breaker having a trip solenoid assembly. The trip solenoid assembly includes a permanent magnet, plunger, trip coil and assist coil and is positioned adjacent to a phase conductor. At high current levels the phase conductor generates a flux that may cause the circuit breaker to nuisance trip. An assist coil is wound adjacent the trip coil. The assist coil is energized only when the current through the circuit breaker is of such a level so as to cause nuisance tripping. The assist coil is not energized during that time period when the trip coil is energized.
摘要:
A multipole circuit breaker including a latch release actuator having a trip coil and a hold-in coil coaxially surrounding a plunger and mounted within a hollow cylindrical actuator support frame. The actuator is mounted in association with a latch mechanism and includes a spring biasing the plunger toward release of the latch mechanism. The hold-in coil is responsive to voltage conditions on an external control line and serves to oppose the action of the bias spring and maintain the plunger in a position to prevent release of the latch mechanism when the voltage on the control line is above a predetermined level. The trip coil is connected to an electronic sensing circuit which activates the trip coil upon overcurrent conditions through the circuit breaker contacts to cause the trip coil to aid the action of the bias spring and overcome the action of the hold-in coil to move the plunger into engagement with the latch mechanism, effecting release of the latch mechanism and separation of the circuit breaker contacts.