Abstract:
A multimode wireless access terminal is configured to operate in idle mode while registered with a plurality of radio access technologies, for example, a TD-SCDMA network and a WCDMA network, and monitor paging messages, with a reduced likelihood of paging conflicts and missed calls. If the paging conflict is seen at a particular cell, then a cell reselection to another cell may be utilized to change the cell and avoid the conflict. Because the probability of a paging conflict is small due to the short duration of paging indicator messages, the access terminal may have very infrequent paging indicator monitoring conflicts, and when conflicts actually do occur, it is very likely that the UE will find a neighbor cell without conflict.
Abstract:
A user equipment may save power by reducing certain battery draining activities when the battery power remaining in the UE fails to meet a threshold value. The UE may skip inter-radio access technology measurements to conserve battery life when the battery power in the UE fails to meet the threshold. The UE may also extend inter-radio access technology measurement periodicity when the battery power in the UE fails to meet the threshold.
Abstract:
Certain embodiments of the present disclosure provide techniques for a multi-mode mobile station to establish paging intervals in different radio access technology (RAT) networks that do not collide.
Abstract:
Certain aspects of the present disclosure propose techniques for improving synchronization shift command convergence in Time Division Synchronous Code Division Multiple Access (TD-SCDMA) uplink synchronization.
Abstract:
Methods and apparatus for establishing multiple connections between a wireless device and multiple base stations and transferring data using these connections via different segments of an orthogonal frequency division multiple access (OFDMA) frame are provided. The multiple connections may be used for multi-way (e.g., three-way) concurrent processing, multi-way (e.g., three-way) handover, or a hybrid between concurrent processing and multi-way handover in an effort to increase data throughput for the wireless device.
Abstract:
Wireless communication is implemented by a multi-mode user equipment (UE). The method includes receiving cross reference timing information indicating a relationship between Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) timing and GSM timing. The method further includes acquiring a Global System for Mobile communications (GSM) signal from at least one GSM cell, based on the cross reference timing information. The UE can handover to a selected GSM cell based on the measurements of the acquired GSM cell(s).
Abstract:
A method for transitioning across multiple radio access technologies is provided. The method comprises associating a first base station identification with a first radio access technology and associating a second base station identification with a second radio access technology. A co-layered relationship is then established between the first base station and first radio access technology and the second base station identification and second radio access technology and stored in a storage device, such as a memory, using the base station identification. The mobile device then searches for the co-layered relationship using the base station identification as a key and then retrieves the stored co-layer relationship. Once the mobile station has retrieved the stored co-layer relationship it utilizes the co-layered relationship to transition from the first radio access technology to the second radio access technology.
Abstract:
Methods and apparatuses are provided for scanning base stations in wireless communications. The base stations can be scanned in order of distance from a device or a corresponding reference point so that base stations of a shortest distance are measured before those of a longer distance. In addition, scanning of base stations can be ceased according to one or more stopping criteria to improve efficiency of scanning.
Abstract:
Aspects of the present disclosure provide methods for a multi-mode mobile station to continue to receive data from a first radio access technology (RAT) after initiating handover from the first RAT to a second RAT. According to aspects, a mobile station may use first and second receive hardware resources to avoid downlink packet loss during inter-RAT handover.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus monitors a page during a current paging cycle on a first frequency. In addition, the apparatus switches to a second frequency after the current paging cycle to receive multicast/broadcast information on the second frequency. Furthermore, the apparatus attempts to receive the multicast/broadcast information on the second frequency before a predetermined time.