Abstract:
An external medical device can include a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions from a mechanical chest compression device. The processor can also be configured to select at least one filter mechanism, the mechanical chest compression device having a chest compression frequency f. The processor can be further configured to apply the at least one filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal, wherein the chest compression artifacts correspond to the chest compressions being delivered to the patient by the mechanical chest compression device, and wherein the at least one filter mechanism substantially rejects content in the frequency f plus content in at least one more frequency that is a higher harmonic to the frequency f.
Abstract:
An apparatus for storing a defibrillator, such as an AED, on a host structure includes a container shell mountable to the host structure. The container shell may be used to store the defibrillator within it. Also included in the container shell is a vibration-dampening material disposed between the host structure and the housing of the defibrillator. The vibration-dampening material is configured to reduce an amount of vibration of the host structure imparted to the defibrillator. This is especially useful for storing AEDs on means of transportation, i.e. where the traveling host structure is a bus, an airplane, a ship, or an elevator, and where the vibration sources from its propulsion system.
Abstract:
A CPR chest compression machine includes a retention structure that is configured to retain a body of the patient, and a compression mechanism. The compression mechanism is coupled to the retention structure and configured to perform successive compressions to the patient's chest. Various types of chest compressions may be performed on a patient during a single resuscitation event. Some embodiments also include a driver configured to drive the compression mechanism. The compression mechanism may thus perform chest compressions that differ from each other in a number of aspects, for example the depth of the compressions or the height of the active decompressions between the compressions. Some embodiments also include an adjustment mechanism. The adjustment mechanism may shift the compression mechanism with respect to the patient so that the chest compressions are performed at different locations of the patient's chest.
Abstract:
An adjustable chest compression device that can adjust to accommodate a variety of patient sizes. The chest compression device can include adjustable support legs structured to support the chest compression mechanism at a distance from the base member and adjust to accommodate a patient size. Another adjustable chest compression device can include adjustable legs that can adjust to accommodate different patient sizes, as well as perform the chest compressions using the adjustable legs. An extension, such as a back plate and/or leg extension can be added to a chest compression device to make the chest compression device taller and/or wider to accommodate larger patients.
Abstract:
A medical device housing having a reduced footprint is described. The medical device housing includes a flange coupled to a first portion of the housing and a second portion of the housing that is configured to be coupled to the flange to substantially enclose an electronic component(s) within an interior of the medical device housing. The first portion of the housing includes a support(s) that supports the flange within the first portion. In some examples, a trench is formed between an interior wall of the first portion of the housing and the flange. An adhesive is deposited within the trench to bond the flange to the first portion of the housing. The second portion of the housing is configured to decouple from the flange to allow access to the interior of the medical device housing, such as for maintenance or repairs.
Abstract:
An example method is performed by a defibrillator that includes a therapy cable receptacle and an electrocardiogram cable receptacle. The method includes displaying a user interface screen that includes a primary channel for displaying a primary waveform and a secondary channel for displaying secondary data. The method also includes detecting a lack of a patient connection for therapy pads and detecting a patient connection for an ECG lead obtained using an ECG electrode cable. In addition, the method includes displaying a representation of an ECG signal obtained using the ECG electrode cable in the primary channel based on detecting the lack of the patient connection for the therapy pads and detecting the patient connection for the ECG lead.
Abstract:
The disclosed physiological feedback systems and methods assist with assessing, monitoring and/or treating a patient experiencing a cardiac arrest event. The systems and methods receive multiple inputs and are continuous and/or iterative during a treatment session to provide physiological state trends of the patient. An index of the physiological state of the patient can be derived and confounders, and/or their effects, can be identified, and/or removed, from the index. Additionally, the systems and methods can assist with determining ischemic injury in a patient based on cerebral tissue oxygenation and/or other physiological data.
Abstract:
An example method of analyzing electrocardiogram (ECG) signals includes receiving, at an ECG device, ECG signals from a multi-lead ECG system. The multi-lead ECG system includes multiple electrodes and leads, and each lead of the multi-lead ECG system provides one of the ECG signals and is coupled to more than one of the multiple electrodes, where certain electrodes are coupled to more than one lead. The method also includes detecting artifact in one or more of the ECG signals, classifying the artifact as a type of artifact, determining which leads of the multiple leads contain at least a threshold amount of the type of artifact, for the leads of the multiple leads that contain at least the threshold amount of the type of artifact identifying a common electrode to the leads, and generating a notification by the ECG device indicating that the common electrode is sensing the artifact.
Abstract:
Systems, devices, and methods relate to utilizing an electronic caliper to analyze an electronic electrocardiogram (ECG). An example method for includes outputting, by a display, an electronic ECG within a graphical user interface (GUI). An electronic caliper is output, by the display, as overlaid on the electronic ECG within the GUI. The electronic caliper includes a first electronic tip and a second electronic tip. The method further includes receiving, by a user input device, a user input signal and moving, based on the user input signal, the first electronic tip, the second electronic tip, or both the first electronic tip and the second electronic tip, relative to the electronic ECG within the GUI.
Abstract:
Systems, devices, and methods relate to utilizing an electronic caliper to analyze an electronic electrocardiogram (ECG). An example method for includes outputting, by a display, an electronic ECG within a graphical user interface (GUI). An electronic caliper is output, by the display, as overlaid on the electronic ECG within the GUI. The electronic caliper includes a first electronic tip and a second electronic tip. The method further includes receiving, by a user input device, a user input signal and moving, based on the user input signal, the first electronic tip, the second electronic tip, or both the first electronic tip and the second electronic tip, relative to the electronic ECG within the GUI.