Abstract:
An enhanced broadcast data service with reports locations of traffic enforcement camera locations (e.g., red light cameras and speed cameras) to users. Traffic enforcement camera information is aggregated, verified (e.g., particularly as to traffic enforcement camera type) and stored (e.g., at a server). A broadcast signal comprising program channels and at least one data channel having traffic enforcement camera information is transmitted to a plurality of receivers. Receivers store at least a subset of the traffic enforcement camera information available from the server and synchronize to it using periodic transmitted updates. Receivers compare receiver location data with stored camera location data, and display or generate audible alerts when the receiver is within a selected geographic range of a traffic enforcement camera. Alerts can be filtered as to camera type. A alerts can employ different color camera icons superimposed on a screen map depending on camera type or whether the camera is newly added.
Abstract:
A system and method for automated activation of a radio, or content receiver, used to receive subscription radio services such as XM or Sirius radio. A wireless communications device with a short range data link wirelessly communicates with the content receiver to control the content receiver and receive a unique identification code from the content receiver. The wireless communications device also has its own unique identification code. The wireless communications device transmits an activation request message over a long range wireless communications link to a control station. The activation request message contains the receivers unique identification code and the communications device's own unique identification code. The control station maintains a database of valid identification codes that is used to authenticate the request. If the control station receives a valid request, an activation signal is sent to the receiver to allow operation of the receiver.
Abstract:
Systems and methods are presented for efficient cross-fading (or other multiple clip processing) of compressed domain information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Exemplary implementation systems may provide cross-fade between AAC/Enhanced AAC Plus (EAACPlus) information streams or between MP3 information streams or even between information streams of unmatched formats (e.g. AAC to MP3 or MP3 to AAC). Furthermore, these systems are distinguished by the fact that cross-fade is directly applied to the compressed bitstreams so that a single decode operation may be performed on the resulting bitstream. Moreover, using the described methods, similar cross fade in the compressed domain between information streams utilizing other formats of compression, such as, for example, MP2, AC-3, PAC, etc. can also be advantageously implemented. Thus, in exemplary embodiments of the present invention a set of frames from each input stream associated with the time interval in which a cross fade is decoded, and combined and recoded with a cross fade or other effect now in the compressed bitstream. Once sent through the client device's decoder, the user hears the transitional effect. The only input data that is decoded and processed is that associated with the portion of each stream used in the crossfade, blend or other interstitial, and thus the vast majority of the input streams are left compressed.
Abstract:
An enhanced broadcast data service with reports locations of traffic enforcement camera locations (e.g., red light cameras and speed cameras) to users. Traffic enforcement camera information is aggregated, verified (e.g., particularly as to traffic enforcement camera type) and stored (e.g., at a server). A broadcast signal comprising program channels and at least one data channel having traffic enforcement camera information is transmitted to a plurality of receivers. Receivers store at least a subset of the traffic enforcement camera information available from the server and synchronize to it using periodic transmitted updates. Receivers compare receiver location data with stored camera location data, and display or generate audible alerts when the receiver is within a selected geographic range of a traffic enforcement camera. Alerts can be filtered as to camera type. A alerts can employ different color camera icons superimposed on a screen map depending on camera type or whether the camera is newly added.
Abstract:
In exemplary embodiments of the present invention, a V2V unit in a vehicle (OBE) can, for example, store a plurality of years of encrypted certificates. The certificates can, for example, be programmed at an OBE factory using a secure server, and access to all certificates can be locked until an unlock key is computed for a given window (certificate validity period). An in-vehicle satellite receiver can then receive, over, for example, a dedicated satellite control channel, unlock codes for a current time window and a next time window, and provide them to the V2V device. Using those unlock codes, the V2V device (OBE) can compute an unlock key from an unlock code provided by the satellite receiver. In this manner an in-vehicle device may be directly messaged, but only to unlock one or more certificates at a controlled time. Without the received lock codes, the stored certificates are not useable.
Abstract:
Systems and methods are presented for cross-fading (or other multiple clip processing) of information streams on a user or client device, such as a telephone, tablet, computer or MP3 player, or any consumer device with audio playback. Multiple clip processing can be accomplished at a client end according to directions sent from a service provider that specify a combination of (i) the clips involved; (ii) the device on which the cross-fade or other processing is to occur and its parameters; and (iii) the service provider system. For example, a consumer device with only one decoder, can utilize that decoder (typically hardware) to decompress one or more elements that are involved in a cross-fade at faster than real time, thus pre-fetching the next element(s) to be played in the cross-fade at the end of the currently being played element. The next elements(s) can, for example, be stored in an input buffer, then decoded and stored in a decoded sample buffer, all prior to the required presentation time of the multiple element effect. At the requisite time, a client device component can access the respective samples of the decoded audio clips as it performs the cross-fade, mix or other effect. Such exemplary embodiments use a single decoder and thus do not require synchronized simultaneous decodes.
Abstract:
Systems and methods for increasing transmission bandwidth efficiency by the analysis and synthesis of the ultimate components of transmitted content are presented. To implement such a system, a dictionary or database of elemental codewords can be generated from a set of audio clips. Using such a database, a given arbitrary song or other audio file can be expressed as a series of such codewords, where each given codeword in the series is a compressed audio packet that can be used as is, or, for example, can be tagged to be modified to better match the corresponding portion of the original audio file. Each codeword in the database has an index number or unique identifier. For a relatively small number of bits used in a unique ID, e.g. 27-30, several hundreds of millions of codewords can be uniquely identified. By providing the database of codewords to receivers of a broadcast or content delivery system in advance, instead of broadcasting or streaming the actual compressed audio signal, all that need be transmitted is the series of identifiers along with any modification instructions to the identified codewords. After reception, intelligence on the receiver having access to a locally stored copy of the dictionary can reconstruct the original audio clip by accessing the codewords via the received IDs, modify them as instructed by the modification instructions, further modify the codewords either individually or in groups using the audio profile of the original audio file (also sent by the encoder) and play back a generated sequence of phase corrected codewords and modified codewords as instructed. In exemplary embodiments of the present invention, such modification can extend into neighboring codewords, and can utilize either or both (i) cross correlation based time alignment and (ii) phase continuity between harmonics, to achieve higher fidelity to the original audio clip.
Abstract:
Apparatuses and methods are provided to inform a user of a broadcast stream, which has multiple, concurrently received channels of program content, about recommendations of a subset of the content currently playing across the available channels or to be played within a selected future time period. The subset of content is selected based on user preferences and system data (e.g., program topic and channel affinities among the broadcast content and channels) to recommend a more diverse subset of content than would be discovered if only user preferences were employed to make the selection of recommended content.
Abstract:
A non-navigation data system for providing traffic data service in a mobile environment can include a data decoder for decoding a digital data stream from a digital audio radio transmission source, location determining means (such as GPS or cellular location determining schemes) for determining a current location of a mobile receiver receiving the digital data stream, a display for displaying traffic data corresponding to the current location, and a plurality of static maps wherein the traffic data corresponding to the current location is overlaid at least over a portion of the static maps.
Abstract:
Apparatuses and methods are provided to inform a user of a broadcast stream, which has multiple, concurrently received channels of program content, about recommendations of a subset of the content currently playing across the available channels or to be played within a selected future time period. The subset of content is selected based on user preferences and system data (e.g., program topic and channel affinities among the broadcast content and channels) to recommend a more diverse subset of content than would be discovered if only user preferences were employed to make the selection of recommended content.