Abstract:
An inspection system includes: a facility that uses wide-band illumination light having different wavelengths and single-wavelength light to perform dark-field illumination on an object of inspection, which has the surface thereof coated with a transparent film, in a plurality of illuminating directions at a plurality of illuminating angles; a facility that detects light reflected or scattered from repetitive patterns and light reflected or scattered from non-repetitive patterns with the wavelengths thereof separated from each other; a facility that efficiently detects light reflected or scattered from a foreign matter or defect in the repetitive patterns or non-repetitive patterns or a foreign matter or defect on the surface of the transparent film; and a facility that removes light, which is diffracted by the repetitive patterns, from a diffracted light image of actual patterns or design data representing patterns. Consequently, a more microscopic defect can be detected stably.
Abstract:
An inspection system includes: a facility that uses wide-band illumination light having different wavelengths and single-wavelength light to perform dark-field illumination on an object of inspection, which has the surface thereof coated with a transparent film, in a plurality of illuminating directions at a plurality of illuminating angles; a facility that detects light reflected or scattered from repetitive patterns and light reflected or scattered from non-repetitive patterns with the wavelengths thereof separated from each other; a facility that efficiently detects light reflected or scattered from a foreign matter or defect in the repetitive patterns or non-repetitive patterns or a foreign matter or defect on the surface of the transparent film; and a facility that removes light, which is diffracted by the repetitive patterns, from a diffracted light image of actual patterns or design data representing patterns. Consequently, a more microscopic defect can be detected stably.
Abstract:
When using a CCD sensor as a photo-detector in a device for inspecting foreign matters and defects, it has a problem of causing electric noise while converting the signal charge, produced inside by photoelectric conversion, into voltage and reading it. Therefore, the weak detected signal obtained by detecting reflected and scattered light from small foreign matters and defects is buried in the electric noise, which has been an obstacle in detecting small foreign matters and defects. In order to solve the above problem, according to the present invention, an electron multiplying CCD sensor is used as a photo-detector. The electron multiplying CCD sensor is capable of enlarging signals brought about by inputted light relatively to the electric noise by multiplying the electrons produced through photoelectric conversion and reading them. Accordingly, compared to a conventional CCD sensor, it can detect weaker light and, therefore, smaller foreign matters and defects.
Abstract:
In an inspection subject substrate, there is a problem that a defect signal is overlooked due to scattered light from a pattern and sensitivity decreases in an irregular circuit pattern part. The inventors propose a defect inspection method, characterized by comprising: an illumination step of guiding light emitted from a light source to a predetermined area on an inspection subject substrate under a plurality of predetermined optical conditions; a detection step of obtaining an electric signal by guiding scattered light components propagating in a predetermined range of azimuthal angle and in a predetermined range of elevation angle to a detector for each of a plurality of scattered light distributions occurred correspondingly to the plurality of optical conditions in the predetermined area; and a defect determination step of determining a defect based on the plurality of electric signals obtained in the detection step.
Abstract:
A defect inspection apparatus includes an irradiation optical system 20, a detection optical system 30, and an image processor 40. In the irradiation optical system, a mirror 2603 is disposed to reflect downward a beam flux that has been guided to a first or second optical path, and a cylindrical lens 251 and an inclined mirror 2604 are disposed to focus the beam flux that has been directed downward by the mirror, at an inclination angle from a required oblique direction extending horizontally, onto a substrate 1 to be inspected, as a slit-shaped beam 90.
Abstract:
An inspection system includes: a facility that uses wide-band illumination light having different wavelengths and single-wavelength light to perform dark-field illumination on an object of inspection, which has the surface thereof coated with a transparent film, in a plurality of illuminating directions at a plurality of illuminating angles; a facility that detects light reflected or scattered from repetitive patterns and light reflected or scattered from non-repetitive patterns with the wavelengths thereof separated from each other; a facility that efficiently detects light reflected or scattered from a foreign matter or defect in the repetitive patterns or non-repetitive patterns or a foreign matter or defect on the surface of the transparent film; and a facility that removes light, which is diffracted by the repetitive patterns, from a diffracted light image of actual patterns or design data representing patterns. Consequently, a more microscopic defect can be detected stably.