Abstract:
An ultrasound vibrating-type defect detection apparatus (100) for detecting a defect in a semiconductor apparatus (10) is provided with: an ultrasound vibrator (42); a high-frequency power supply (40); a camera (45); and a controller (50) for adjusting the frequency of high-frequency power supplied from the high-frequency power supply (40) to the ultrasound vibrator (42), and for performing detection of a defect in the semiconductor apparatus (10). The controller (50) causes the camera (45) to capture an image of the semiconductor apparatus (10) while varying the frequency of high-frequency power supplied from the high-frequency power supply (40) to the ultrasound vibrator (42), and performs detection of a defect in the semiconductor apparatus (10) on the basis of the captured image.
Abstract:
The purpose of the present invention is to accurately detect structures from a remote location without contact while distinguishing between defects such as cracking, separation, and internal cavities. This status determination device includes: a displacement calculation unit that calculates a two-dimensional spatial distribution of displacement in time-series images, said time-series images being taken before and after a load is applied to a surface of a structure; a correction amount calculation unit that calculates a correction amount from the two-dimensional spatial distribution of displacement in the time-series images, said correction amount being based on the amount of movement of the structure surface in the normal direction as induced by said loading; a displacement correction unit that subtracts the correction amount from the two-dimensional spatial distribution of displacement in the time-series images, and extracts a two-dimensional spatial distribution of displacement of the structure surface; and an abnormality determination unit for identifying defects in the structure on the basis of a comparison of the two-dimensional spatial distribution of displacement of the structure surface and a pre-prepared spatial distribution of displacement.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features, in the front quartersphere, a light channel assembly for collecting light reflected from the surface of the workpiece, and a front collector and wing collectors for collecting light scattered from the surface, to greatly improve the measurement capabilities of the system. The light channel assembly has a switchable edge exclusion mask and a reflected light detection system for improved detection of the reflected light.
Abstract:
A system for inspecting a glass container and methods of inspecting glass containers are provided. The system includes a panel including a plurality of light sources configured to illuminate the glass container. The system includes a camera configured to image the illuminated glass container. The system includes a controller configured to adjust the amount of power applied to each of the light sources individually. The system includes a processor configured to evaluate the image of the illuminated glass container for indications of defects in the container. Methods of calibrating the system are also provided.
Abstract:
The present invention relates to a method for generating a compensation matrix during a substrate inspection. The method comprises the steps of: selecting information of N1 (N1≧2) feature objects which are randomly predetermined within a field of view (FOV) on a substrate; generating a first compensation matrix on the basis of information of the feature objects which are extracted on the substrate; comparing an offset value of each of all the feature objects with a predetermined reference value by applying all the feature objects within the FOV to the compensation matrix to count the number of the feature objects of which the offset value of the each of all the feature objects is less than the predetermined reference value; and repeatedly performing the above steps N2 times (N2≧1), and generating a second compensation matrix using information of the feature objects which have the offset value which is less than the predetermined reference value, in case the number of the counted feature objects is the maximum.
Abstract:
To process a signal from a plurality of detectors without being affected by a variation in the height of a substrate, and to detect more minute defects on the substrate, a defect inspection device is provided with a photoelectric converter having a plurality of rows of optical sensor arrays in each of first and second light-collecting/detecting unit and a processing unit for processing a detection signal from the first and the second light-collecting/detecting unit to determine the extent to which the positions of the focal points of the first and the second light-collecting/detecting unit are misaligned with respect to the surface of a test specimen, and processing the detection signal to correct a misalignment between the first and the second light-collecting/detecting unit, and the corrected detection signal outputted from the first and the second light-collecting/detecting unit are combined together to detect the defects on the test specimen.
Abstract:
A method for image based inspection of an object includes receiving an image of an object from an image capture device, wherein the image includes a representation of the object with mil-level precision. The method further includes projecting a measurement feature of the object from the image onto a three-dimensional (3D) model of the object based on a final projection matrix; determining a difference between the projected measurement feature and an existing measurement feature on the 3D model; and sending a notification including the difference between the projected measurement feature and the existing measurement feature.
Abstract:
A surface inspection system, as well as related components and methods, are provided. The surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features, in the front quartersphere, a light channel assembly for collecting light reflected from the surface of the workpiece, and a front collector and wing collectors for collecting light scattered from the surface, to greatly improve the measurement capabilities of the system. The light channel assembly has a switchable edge exclusion mask and a reflected light detection system for improved detection of the reflected light.
Abstract:
There is provided a substrate inspection method for inspecting a substrate having a plurality of holes formed on a plate-shaped material, including: an image acquisition step (S103) of picking-up an image of the holes formed on the substrate via an optical system including a microscope having an objective lens of a specific magnification, from one surface side of the substrate; a super resolution image processing step (S104) of obtaining a super resolution image corresponding to a picked-up image via an optical system including a microscope having an objective lens of higher magnification than the specific magnification, by applying super resolution image processing to the image obtained in the image acquisition step (S103); and an inspection step (S108) of inspecting a proper or improper hole formed on the substrate using the super resolution image obtained in the super resolution image processing step (S104).
Abstract:
A surface inspection system includes a beam source subsystem, a beam scanning subsystem, a workpiece movement subsystem, an optical collection and detection subsystem, and a processing subsystem. The optical collection and detection system features back collectors disposed in the back quartersphere, outside the incident plane, for collecting light scattered from the surface of the workpiece. The back collectors are disposed at a relative minimum in the portion of scattered light attributable to haze relative to the portion of scattered light attributable to defect scatter portion, or, alternatively, at a relative minimum in the Rayleigh scatter.