摘要:
An optical filtering device and an optical inspection apparatus for detecting a defect in a high sensitivity using an optical filtering device which includes a shutter array formed in a two-dimensionally on an optically opaque thin film produced on a SOI wafer and the SOI wafer is removed at portions thereof on the lower side of the shutter patterns to form perforation portions while working electrodes are formed at the remaining portion of the SOI wafer, a glass substrate having electrode patterns formed on the surface thereof and having the shutter array mounted thereon, and a power supply section for supplying electric power to the electrode patterns formed on the glass substrate and the working electrodes of the SOI wafer. And the working electrodes is controlled to cause the shutter patterns to carry out opening and closing movements with respect to the perforation portions to carry out optical filtering.
摘要:
To effectively utilize the polarization property of an inspection subject for obtaining higher inspection sensitivity, for the polarization of lighting, it is necessary to observe differences in the reflection, diffraction, and scattered light from the inspection subject because of polarization by applying light having the same elevation angle and wavelength in the same direction but different polarization. According to conventional techniques, a plurality of measurements by changing polarizations is required to cause a prolonged inspection time period that is an important specification of inspection apparatuses. In this invention, a plurality of polarization states are modulated in micro areas in the lighting beam cross section, images under a plurality of polarized lighting conditions are collectively acquired by separately and simultaneously forming the scattered light from the individual micro areas in the individual pixels of a sensor, whereby inspection sensitivity and sorting and sizing accuracy are improved without reducing throughput.
摘要:
A method of inspecting defects and a device inspecting defects of detecting defects at high sensitivity and high capture efficiency even on various patterns existing on a wafer. In the device of inspecting defects, an illumination optical system is formed of two systems of a coherent illumination of a laser 5 and an incoherent illumination of LEDs 6a, 6b, 6c and 6d, and light paths are divided in a detecting system corresponding to respective illumination light, spatial modulation elements 55a and 55b are arranged to detecting light paths, respectively, scattered light inhibiting sensitivity is shielded by the spatial modulating elements 55a and 55b, scattered light transmitted through the spatial modulation elements 55a and 55b is detected by image sensors 90a and 90b arranged to respective light paths, and images detected by these two image sensors 90a and 90b are subjected to a comparison processing, thereby determining a defect candidate.
摘要:
By including an illumination system and a detection system, an information collecting function of monitoring an environment, such as temperature and atmospheric pressure, and an apparatus state managing function having a feedback function of comparing the monitoring result and a design value, a theoretical calculation value or an ideal value derived from simulation results and calibrating an apparatus so that the monitoring result is brought close to the ideal value, a unit for keeping the apparatus state and apparatus sensitivity constant is provided. A control unit 800 is configured to include a recording unit 801, a comparing unit 802, a sensitivity predicting unit 803, and a feedback control unit 804. In the comparing unit 802, the monitoring result transmitted from the recording unit 801 and an ideal value stored in a database 805 are compared with each other. When a difference between the ideal value and the monitoring result exceeds a predetermined threshold, the feedback control unit 804 corrects the illumination system and the detection system.
摘要:
In a defect inspection method and an apparatus of the same, for enabling to conduct an inspection of fine defects without applying thermal damages on a sample, the following steps are conducted: mounting a sample on a rotatable table to rotate; irradiating a pulse laser emitting from a laser light source upon the sample rotating; detecting a reflected light from the sample, upon which the pulse laser is irradiated; detecting the reflected light from the sample detected; and detecting a defect on the sample through processing of a signal obtained through the detection, wherein irradiation of the pulse laser emitting from the laser light source upon the sample rotating is conducted by dividing the one pulse emitted from the laser light source into plural numbers of pulses, and irradiating each of the divided pulse lasers upon each of separate positions on the sample, respectively.
摘要:
An apparatus for electrolyzing sulfuric acid, the apparatus comprising an electrolytic cell comprising a cathode chamber having a cathode and an anode chamber having an anode, the cathode chamber and the anode chamber being separated by a diaphragm, a sulfuric acid tank configured to store the sulfuric acid, a supply pipe connecting the sulfuric acid tank to an inlet port of the anode chamber, a connection pipe connecting an outlet port of the cathode chamber to the inlet port of the anode chamber, a first supply pump provided on the supply pipe and configured to supply the sulfuric acid from the sulfuric acid tank to the cathode chamber through the supply pipe, and a drain pipe connected to an outlet port of the anode chamber and configured to supply to a solution tank a solution containing an oxidizing agent generated by electrolysis in the anode chamber.
摘要:
An inspection method, including: illuminating a light on a wafer on which plural chips having identical patterns are formed; imaging corresponding areas of two chips formed on the wafer to obtain inspection images and reference images with an image sensor; and processing the obtained inspection image and the reference image to produce a difference image which indicates a difference between the inspection image and the reference image and detect a defect by comparing the difference image with a threshold, wherein a threshold applied to a difference image which is produced by comparing the inspection image and the reference image obtained by imaging peripheral portion of the wafer is different from a threshold applied to a difference image which is produced by comparing the inspection image and the reference image obtained by imaging central portion of the wafer.
摘要:
A defect inspection apparatus and method includes a darkfield illumination optical system which conducts darkfield illumination upon the surface of a sample with irradiation light having at least one of wavelength band, a darkfield detection optical system which includes a reflecting objective lens for converging the light scattered from the surface of the sample that has been darkfield-illuminated with the irradiation light having the at least one wavelength band, and imaging optics for imaging onto a light-receiving surface of an image sensor the scattered light that the reflecting objective lens has converged, and an image processor which, in accordance with an image signal obtained from the image sensor of the darkfield detection optical system, discriminates defects or defect candidates present on the surface of the sample.
摘要:
To provide a defect inspection apparatus for inspecting defects of a specimen without lowering resolution of a lens, without depending on a polarization characteristic of a defect scattered light, and with high detection sensitivity that is realized by the following. A detection optical path is branched by at least one of spectral splitting and polarization splitting, a spatial filter in the form of a two-dimensional array is disposed after the branch, and only diffracted light is shielded by the spatial filter in the form of a two-dimensional array.
摘要:
A two-dimensional sensor is installed inclining at a predetermined angle to a moving direction of a stage on which an object to be inspected is mounted and, in synchronism with the movement of the stage, a picked up image is rearranged so that there can be obtained an image in high-density sampling with a picture-element size or less of the two-dimensional sensor with respect to a wafer. Thus, interpolation calculation during position alignment becomes unnecessary, and size calculation and classification of a defect can be performed with high accuracy.