摘要:
A system and automated method for assessing ventricular synchrony in ambulatory patients is provided including at least one mechanical sensor (e.g., accelerometer, tensiometric sensor, force transducer, and the like) operatively coupled to a first myocardial location in order to measure a wall motion signal of a first chamber, and a second mechanical sensor operatively coupled to a second myocardial location in order to measure a wall motion signal of a second chamber. The wall motion signals are processed in order to identify the time at which a fiducial (e.g., an inflection point, a threshold crossing, a maximum amplitude, etc.) occurs for each respective signal. The temporal separation between the fiducial points on each respective signal is measured as a metric of ventricular synchrony and can be optionally utilized to adjust pacing therapy timing to improve synchrony.
摘要:
The present invention relates to monitoring septal wall motion of the atrial and/or ventricular chambers of a heart for optimizing cardiac pacing intervals based on signals derived from the monitored wall motion. At least one lead of medical device is equipped with a motion sensor adapted to couple to septal tissue. The device receives and may post-process (e.g., suitably filter, rectify and/or integrate) motion signals to determine acceleration, velocity and/or displacement. During pacing interval optimization the wall motion is measured for those pacing intervals and the pacing interval setting(s) that produce minimal wall motion for chronic therapy delivery. In addition, methods for periodically determining whether to cease or resume delivery of a bi-ventricular pacing therapy to a patient that may have experienced beneficial reverse remodeling of the heart.
摘要:
An implantable medical device (IMD) includes a sensor for monitoring parameters indicative of sleep disordered breathing. The IMD also includes a position sensor that indicates the relative position and/or activity level of the patient. The position sensor data is used in one or more ways in conjunction with the SDB sensing. The position data is used to confirm that such sensed data is likely indicative of SDB or to select the appropriate criteria for comparison.
摘要:
In determining whether a patient has ischemia or other conditions discernible in the variation occurring in the ST portion of the electrocardiogram signal, we filter out bad ST change parameters that are not changing at a rate representative of human ischemia ST change parameter rates of change. This can be used for driving therapy systems to alleviate cardiac ischemia. This filtering can be enhanced by using multiple cardiac electrical vectors for the electrogram signal vectors, and using a determination of Axis shift to modify filter parameters and the expected ranges of precursors to the ST change parameter (an ST change variable) to eliminate bad cardiac cycles, that is cardiac cycle information that may be misleading.
摘要:
In using electrogram signals to determine physiologic conditions like ischemia, the bad cardiac cycle information due to noise, axis shifts in the cardiac electrical axis, and the like must be removed if the electrogram signal can be made to be a good indicator. If this is accomplished through the adaptive filtering techniques shown here, the signal can be used to drive a closed loop therapy system responsive to those physiologic conditions discernible from good cardiac cycle electrocardiogram signals.