Abstract:
A portable electronic device that provides compact configurations for audio elements are disclosed. The audio elements can be drivers (e.g., speakers) or receivers (e.g., microphones). In one embodiment, an audio element can be mounted on or coupled to an intermediate structure (e.g., a flexible electrical substrate) having an opening therein to allow audio sound to pass there through. In another embodiment, an audio chamber can be formed to assist in directing audio sound between an opening an outer housing and a flexible electronic substrate to which the audio element is mounted or coupled thereto. In still another embodiment, a barrier, such as a mesh barrier, can be provided in an opening of an outer housing so that undesired foreign substances can be blocked from further entry into the opening in the outer housing.
Abstract:
A cold worked stainless steel bezel for a portable electronic device. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring. The bezel is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints. the portable electronic device may include a personal media device, a mobile telephone, or any other suitable device or combination thereof.
Abstract:
Electronic devices are provided with ejectable component assemblies that can be substantially flush with the external surfaces of the housings of the devices, despite variations in their manufacture. The ejectable component assemblies may include connectors coupled to circuit boards of the devices, and trays that can be loaded with removable modules, inserted through openings in the housings of the devices, and into the connectors for functionally aligning the removable modules with the circuit boards. The ejectable component assemblies may also include ejectors coupled to the housings of the devices for ejecting the trays from the connectors and, thus, from the devices themselves.
Abstract:
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.
Abstract:
Systems and methods are provided for media devices including a housing, a frame disposed adjacent to the housing, and an acoustic source that is integrated with the frame for emitting sound from the media device.
Abstract:
Improved housings for electronic devices are disclosed. An electronic device housing can make use of at least one outer member (e.g., cover) that can be aligned, protected and/or secured with respect to other portions of the housing for the electronic device. In one embodiment, an electronic device housing can have one or more outer members (e.g., exposed major surfaces), such as front or back surfaces, that are formed of glass. Protective sides can be provided in some embodiments to protect the edges of the one or more glass surfaces so as to dissipate impact forces and thus reduce damage to the electronic device housing. The one or more glass surfaces can be part of outer member assemblies that can be secured to other portions of the electronic device housing. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic device can be portable and in some cases handheld.
Abstract:
A cold worked stainless steel bezel for a portable electronic device is provided. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring, (e.g., using a special tool or a magnetic field). Because the bezel is manufactured from cold worked stainless steel, it is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints.
Abstract:
This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.
Abstract:
This is directed to an electronic device enclosure. The enclosure includes an outer periphery member forming an outer surface of a device, and to which an internal platform is connected. Electronic device components can be assembled to one or both surfaces of the internal platform. The enclosure can include front and back cover assemblies assembled to the opposite surfaces of the outer periphery member to retain electronic device components. One or both of the cover assemblies can include a window through which display circuitry can provide content to a user of the device.