Abstract:
A method includes defining an application operating cycle and a number of behavior matrices for a hybrid power train that powers the application, each behavior matrix corresponding to operations of the hybrid power train operating in a parallel configuration. The method includes determining a number of behavior sequences corresponding to the behavior matrices and applied sequentially to the application operating cycle, confirming a feasibility of each of the behavior sequences, determining a fitness value corresponding to each of the feasible behavior sequences, in response to the fitness value determining whether a convergence value indicates that a successful convergence has occurred, and in response to determining that a successful convergence has occurred, determining a calibration matrix in response to the behavior matrices and fitness values. The method includes providing the calibration matrix to a hybrid power train controller.
Abstract:
A system includes a hybrid power train comprising an internal combustion engine and electrical system, which includes a first and second electrical torque provider, and an electrical energy storage device electrically coupled to first and second electrical torque provider. The system further includes a controller structured to perform operations including determining a power surplus value of the electrical system; determining a machine power demand change value; in response to the power surplus value of the electrical system being greater than or equal to the machine power demand change value, operating an optimum cost controller to determine a power division for the engine, first electrical torque provider, and second electrical torque provider; and in response to the power surplus value of the electrical system being less than the machine power demand change value, operating a rule-based controller to determine the power division for the engine, first, and second electrical torque provider.