Abstract:
A method and apparatus for dynamic frequency selection in a wireless communication system or network includes processing that begins when an access point determines interference on a wireless channel that is being used by the access point. When the interference exceeds an interference threshold, the access point provides a request packet to affiliated stations being serviced by the access point for channel spectrum information. The processing continues as the affiliated stations generate the channel spectrum information regarding each of the wireless channels in the wireless communication network. The processing proceeds then as the affiliated stations provide the channel spectrum information to the access point via the current wireless channel. The access point interprets the channel spectrum information to determine a desired wireless channel of the plurality of wireless channels within the wireless communication network. The access point then provides a selection packet to the affiliated stations via the current wireless channel to indicate that the access point will begin using the desired wireless channel at a particular future time.
Abstract:
A method for receiving a frame in a high data throughput wireless local area network begins by receiving a preamble of the frame via a channel in accordance with a default receiver filter mask. The processing continues by validating the preamble. The processing continues by, when the preamble is validated, interpreting the preamble to determine a high data throughput channel configuration. The processing continues by reconfiguring the default receiver filter mask in accordance with the high data throughput channel configuration to produce a reconfigured receiver filter mask. The processing continues by receiving a data segment of the frame in accordance with the reconfigured receiver filter mask.
Abstract:
An apparatus for high data throughput reception in a WLAN includes a receiving module, first and second determining modules, a generating module, and a producing module. The receiving module receives a symbol vector representing M streams of symbols transmitted via a wireless communication channel. The first determining module determines inner coded bits and extrinsic information of the inner coded bits based on the symbol vector, a channel matrix, and inner extrinsic information feedback. The second determining module determines outer coded bits and extrinsic information of the outer coded bits based on the extrinsic information of the inner coded bits, the inner coded bits, and a soft input soft output decoding process. The generating module generates the inner extrinsic information feedback based on the extrinsic information of the outer coded bits. The producing module produces decoded bits based on the outer coded bits.
Abstract:
An analog-to-digital converter (ADC) disposed in a data reception path to convert data from an analog format to a digital format is switched between two or more power modes to conserve power when data is not being received. ADC stays in a lower power-lower precision mode until an inbound data is detected, at which time the ADC switches to a higher power-higher precision mode to convert the data. Once data conversion is completed, the ADC switches back to the lower power-lower precision mode to conserve power.
Abstract:
A method for transmitting wide bandwidth signals in a network that includes legacy devices begins by determining channel bandwidth of a channel that supports the wide bandwidth signals in the network. The method continues by determining overlap of legacy channel bandwidth with the channel bandwidth of the channel. The method continues by providing a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel.
Abstract:
A method for generating a preamble of a frame for a wide-bandwidth channel wireless communication begins by generating a legacy carrier detect field. The method continues by generating a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field. The method continues by generating a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field.
Abstract:
A Wireless Local Area Network (WLAN) system in which wireless terminals each operate upon battery power. One of the wireless terminals acts as a Master to coordinate the transmission and receptions of the Slaves so as to reduce the power consumed by all of the devices. The Slaves operate according to a power up and power down sequence to conserve battery power. Further, the terminals may alternate between being Slaves and being the Master to equalize battery consumption of the wireless terminals.
Abstract:
A frame format for high data throughput wireless local area network transmissions includes a first preamble segment, a second preamble segment, and a variable length data segment. The first preamble segment includes a first training sequence, a second training sequence, and a high throughput channel indication, wherein the first training sequence is within a first set of subcarriers of a channel and the second training sequence is within a second set of subcarriers of the channel, wherein the first set of subcarriers is a subset of the second set of subcarriers. The second preamble segment includes a third training sequence within a third set of subcarriers of the channel, wherein the second set of subcarriers is a subset of the third set of subcarriers. The variable length data segment utilizes the third set of subcarriers to convey data.
Abstract:
A method for configuring a multiple input multiple output (MIMO) wireless communication begins by generating a first preamble for a first antenna of the MIMO communication, wherein the first preamble includes a carrier detect field, a first channel select field, a first signal field, and a second signal field. The method continues by generating a second preamble for at least one other antenna of the MIMO communication, wherein the second preamble includes the carrier detect field, a plurality of channel select fields, and the second signal field. The method continues by simultaneously transmitting the carrier detect field via the first antenna and the least one other antenna. The method continues by transmitting the first channel select field and the first signal field via the first antenna. The method continues by, subsequent to the transmitting the first channel select field and the first signal field via the first antenna, transmitting the plurality of channel select fields via the at least one other antenna. The method continues by simultaneously transmitting the second signal field via the first antenna and the at least one other antenna.
Abstract:
A configurable spectral mask for a channel for use in a wireless communication includes a channel pass region, a floor region, and a transition region. The channel pass region provides a first usable signal bandwidth of a plurality of usable signal bandwidths corresponding to a first channel width of a plurality of channel widths. The floor region provides a first floor attenuation value of a plurality of floor attenuation values corresponding to the first channel width. The transition region providing a first transition attenuation of a plurality of transition attenuations from the channel pass region to the floor region, wherein the first attenuation region corresponds to the first channel width.