Abstract:
A planar light source includes a large variable width of an irradiation angle of illumination light, a display device having a large variable width of an angle of field that uses the planar light source, a portable terminal device that uses the display device, and a ray direction switching element that is incorporated in the planar light source. A beam direction regulating element (a louver), which controls a direction of light, and a transparent and scattering switching element, which can switch the transparent state and the scattering state according to ON and OFF of an applied voltage, are provided between a backlight and a liquid crystal panel, whereby it is possible to increase a variable width of an irradiation angle of light in the planar light source and increase a variable width of an angle of field of the liquid crystal display device that uses the planar light source.
Abstract:
A planar light source, Fresnel lens sheet, and louver are disposed in the stated order in a light source apparatus. The Fresnel lens sheet deflects and focuses in one dimension light that has entered from the planar light source. The louver is disposed in the optical path of the light emitted from the Fresnel lens sheet, and the directivity of the light can be increased by restricting the traveling direction of the light to the focal direction of the Fresnel lens sheet. The light utilization ratio can thereby be increased, the directivity of planarly emitted light can be increased, and the brightness can be made uniform at the point of observation.
Abstract:
A liquid crystal display having a wide viewing angle and easily manufactured. The liquid crystal display comprises an upper substrate and a lower substrate, and a liquid crystal material disposed between the upper substrate and the lower substrate. The liquid crystal display has a conductive protrusion disposed on the surface of the upper substrate opposing to the lower substrate. The conductive protrusion is disposed over a scanning electrode line or a signal electrode line and has the same potential as that of the upper electrode. As another structure, each of pixel electrodes on the lower substrate has a smaller area than that of a common electrode on the upper substrate and is covered by the common electrode, and each of the pixel electrodes comprises an electrode portion having approximately symmetrical shape.
Abstract:
A liquid crystal display has a holographic polymer dispersed liquid crystal between transparent substrates, and a plurality of phase gratings are formed in the holographic polymer dispersed liquid crystal so as to selectively reflect light components for the three primary colors.
Abstract:
A first optical compensation plate consists of M (M being an integer equal to or greater than 2) optical compensation layers. A second optical compensation plate consists of N (N being an integer equal to or greater than 2) optical compensation layers. A liquid crystal display panel has (M+N) liquid crystal layers. The liquid crystal layers are made of materials having optically different polarities from those of the first and second optical compensation plates. Further, the direction of the optic axis of a j-th (j=1, 2, . . . , M) optical compensation layer from a first surface of the first optical compensation plate is substantially parallel to the direction of the optic axis of an (M-j+l)-th liquid crystal layer from the first optical compensation plate of the liquid crystal display panel at the time of voltage application, and the direction of the optic axis of an i-th (i=1, 2, . . . , N) optical compensation layer from a third surface of the second optical compensation plate is substantially parallel to the direction of the optic axis of an (M+N-i+l)-th liquid crystal layer from the first optical compensation plate of the liquid crystal display panel at the time of voltage application.
Abstract:
In a liquid crystal display apparatus comprising a twisted nematic liquid crystal sandwiched between a first substrate having a common electrode and a second substrate having a plurality of pixel electrodes, the twisted nematic liquid crystal having a splay distortion when no voltage is applied, a scan line is inserted between a pixel electrode and a signal electrode.
Abstract:
A liquid crystal display panel confines liquid crystal between a first orientation film over pixel electrodes and a second orientation film over a common electrode, and differently oriented areas of the first orientation film form boundaries extending over the pixel electrodes and between the pixel electrodes and gate/drain bus lines so as to align electric lines of force in the electric field with directions of liquid crystal molecules on both sides of each boundary, thereby stably controlling a disclination line at a predetermined position outside of open areas over the pixel electrodes.
Abstract:
A first polarizer and a second polarizer are located in an opposing relationship to each other on the optical axis of incident light with their polarization directions displaced from each other by a predetermined angle. A liquid crystal cell is arranged between the first polarizer and the second polarizer for rotation around the optical axis of the incident light. The incident light is introduced into the first polarizer while the liquid crystal cell is rotated. Transmission light, which is the incident light that has been transmitted successively through the first polarizer, the liquid crystal cell, and the second polarizer, is received by a photo-detector. The ratio between a variable component and a fixed component of the intensity of the transmission light is calculated. The cell gap of the liquid crystal cell is determined from the calculated ratio.
Abstract:
A planar light source, Fresnel lens sheet, and louver are disposed in the stated order in a light source apparatus. The Fresnel lens sheet deflects and focuses in one dimension light that has entered from the planar light source. The louver is disposed in the optical path of the light emitted from the Fresnel lens sheet, and the directivity of the light can be increased by restricting the traveling direction of the light to the focal direction of the Fresnel lens sheet. The light utilization ratio can thereby be increased, the directivity of planarly emitted light can be increased, and the brightness can be made uniform at the point of observation.
Abstract:
To suppress light leakage at the time of dark state, and to provide a liquid crystal display device whose electrodes in the reflection areas can be formed with high precision. The liquid crystal display device has a reflection area within a pixel unit by corresponding at least to a reflection plate forming part, and the reflection area is driven with a lateral electric field mode and normally-white. A driving electrode for forming an electric field to a liquid crystal layer of the reflection area is formed on the reflection plate via an insulating film by using a non-transparent electric conductor.