Abstract:
A method of data transmission over guard sub-carriers is provided in a multi-carrier OFDM system. Adjacent radio frequency (RF) carriers are used to carry radio signals transmitted through adjacent frequency channels. A plurality of guard sub-carriers between adjacent frequency channels are aligned and identified for data transmission in a pre-defined physical resource unit. The identified guard sub-carriers do not overlap with normal data sub-carriers of the radio signals transmitted through the adjacent frequency channels. At least one of the identified guard sub-carriers is reserved as NULL sub-carrier. A flexible multi-carrier transceiver architecture is also provided in a multi-carrier OFDM system. Different multi-carrier and/or MIMO/SISO data transmission schemes are implemented by adaptively reconfigure same hardware modules including common MAC layer module, physical layer entities, and RF entities. Furthermore, the flexible multi-carrier transceiver architecture can be used to support data transmission over guard sub-carriers.
Abstract:
New enhanced physical broadcast channel (EPBCH) based on UE-specific reference signals (DMRS) for MIB and SIB transmission is proposed. The overall design consideration for EPBCH can be summarized as follows: support different values of frequency reuse factor, support different cell coverage sizes, maximized diversity gain in open-loop operation such as transmit diversity and frequency diversity, minimized overhead, and minimized UE complexity.
Abstract:
A two-level physical structure is defined for better diversity for both distributed and localized transmission in enhanced physical downlink control channel (ePDCCH). First level is a physical unit of enhanced resource element groups (eREGs), where the group of REs is predefined for each eREG. Second level is a logical unit of enhanced control channel elements (eCCEs), where the group of eREGs is predefined or configurable by higher layer for each eCCE. For distributed transmission of ePDCCH, eCCE consists of several eREGs that are distributed in multiple non-contiguous PRBs spreading over the whole channel frequency. Downlink control information (DCI) is transmitted on a number of aggregated eCCEs according to the modulation and coding level required. The utilization reference signals of antenna ports for ePDCCH demodulation is based on the logical order of eCCEs and the aggregation level for DCI transmission.
Abstract:
Methods of multi-point carrier aggregation configuration and data forwarding are disclosed. In one embodiment of the invention, a primary connection is established between a UE and a primary base station in a primary cell with a first UE-ID. A second connection is configured between the UE and a second base station in a secondary cell with a second UE-ID. Component carriers from the primary and the second connections are configured and aggregated. Mobility management functions are performed on the primary connection. In another embodiment of the current invention, a first UE data is received from a primary connection with a UE connecting to a first base station, a second UE data is received from a second base station. The first UE data and the second UE data are combined. A third UE data from a network entity is distributed to the first and the second base station.
Abstract:
Various solutions for multi-radio access technology (RAT) spectrum sharing in mobile communications are described. An apparatus utilizing a first RAT may transmit user equipment (UE) capability information to a first network node of the first RAT, wherein the UE capability information indicates that the apparatus supports multi-RAT spectrum sharing (MRSS). Then, the apparatus may receive a signaling from the first network node, wherein the signaling indicates the apparatus to provide channel information for MRSS. Based on the signaling, the apparatus may perform at least one of the following: (i) transmitting a measurement report of a channel state information-reference signal (CSI-RS) of a second RAT to the first network node; and (ii) transmitting a sounding reference signal (SRS) or a physical random access channel (PRACH) to a second network node of the second RAT.
Abstract:
Various solutions for improvement of scheduling multi-cell PUSCH/PDSCH transmission with a single DCI are described. An apparatus may receive a DCI scheduling cells from a network node. The DCI includes at least one of a first DCI, a second DCI, and a third DCI. The apparatus may determine a DCI size budget of the DCI counted in one cell. The apparatus may perform a DCI decoding according to the DCI size budget and perform a PDSCH reception or a PUSCH transmission with at least one cell based on the DCI. The first DCI includes a common bit field, a first specific bit field and a plurality of designated bit fields corresponding to the cells, the second DCI includes the common bit field, a second specific bit field and a first part of the designated bit fields, and the third DCI includes a second part of the designated bit fields.
Abstract:
A new design for physical downlink control channel (PDCCH) is proposed for the next generation 5G new radio systems. A UE receives the configuration of a default control resource set (CORESET) in MIB/SIB from its serving base station. The default CORESET contains both common search space and UE-specific search space for candidate PDCCH transmission. A PDCCH in a default CORESET is mapped to physical resource in a distributed or localized manner. Specifically, various REG-to-CCE mapping rules are proposed to improve frequency diversity gain, or frequency selectivity gain, or to reduce latency of PDCCH processing. Further, to facilitate analog beamforming in mmWave systems, the default CORESET is transmitted in a synchronization signal (SS) block associated with a corresponding analog beam direction.
Abstract:
A method of efficient wideband operation for intra-band non-contiguous spectrum using extending bandwidth part (BWP) configuration is proposed. The BWP definition is extended to cluster BWPs to aggregate distributed spectrum blocks within a frequency range (e.g., 200 MHz) by single carrier operation and facilitate UE to filter out the transmission of unknown RAT between any two of the distributed spectrum blocks. In addition, the cluster BWP configuration enables dynamic aggregation of the number and location of the distributed spectrum blocks based on LBT results in unlicensed spectrum. Specifically, the BWP definition is extended to a group of one or multiple radio resource clusters, each of which contains a set of contiguous PRBs in frequency domain within the associated carrier.
Abstract:
A method to use UE as a mobile device relay using PC5 link or sidelink to relay data traffic to/from end UEs for coverage extension is proposed. A relay UE can be the group head UE of a UE relay group including one or more remote UEs. A remote UE can be in-coverage or out-of-coverage of the serving cell served by a serving base station. In a first novel aspect, the network is aware of remote UE existence without direct Uu link. In addition, methods for resource allocation and interference management are proposed. In a second novel aspect, solutions for synchronization of remote UEs on PC5 link, and solutions for connection setup between relay UE and remote UEs on PC5 link are proposed.
Abstract:
A new design for physical downlink control channel (PDCCH) is proposed for the next generation 5G new radio systems. A UE receives the configuration of a default control resource set (CORESET) in MIB/SIB from its serving base station. The default CORESET contains both common search space and UE-specific search space for candidate PDCCH transmission. A PDCCH in a default CORESET is mapped to physical resource in a distributed or localized manner. Specifically, various REG-to-CCE mapping rules are proposed to improve frequency diversity gain, or frequency selectivity gain, or to reduce latency of PDCCH processing. Further, to facilitate analog beamforming in mmWave systems, the default CORESET is transmitted in a synchronization signal (SS) block associated with a corresponding analog beam direction.