摘要:
This disclosure concerns a semiconductor integrated circuit that includes a semiconductor substrate, a plurality of well regions formed on one surface of the semiconductor substrate and electrically isolated from each other, a plurality of MOS transistors formed in the well regions and a substrate bias generator that applies substrate biases to the individual well regions based on actually measured process-derived variance of the MOS transistors in threshold voltage to bring the threshold voltages of the respective MOS transistors into conformity with a normal threshold voltage.
摘要:
A first logic circuit has its supply voltage controlled. A second logic circuit operates in response to an external clock signal. An adjustment circuit includes a first delay circuit supplied with the external clock signal, and a detection circuit which detects a skew between timing of a first clock signal output from the first logic circuit and a second clock signal output from the second logic circuit section. The adjustment circuit adjusts the delay time of the first delay circuit according to the result of the detection by the detection circuit and applies an output signal of the first delay circuit to the first logic circuit as a third clock signal.
摘要:
The invention provides a method of manufacturing a semiconductor device, capable of enhancing characteristics of each semiconductor element constituting the semiconductor device, while reducing or suppressing non-uniformity in the characteristics thereof. When forming a thin-film circuit constructed by arranging a plurality of pixel circuits on a glass substrate, first, a plurality of concave portions to be seeds in crystallizing a semiconductor film are formed on the glass substrate with a pitch n times an array pitch of a plurality of pixel circuits. Then, an amorphous silicon film is formed on the glass substrate on which the concave portions are formed, and by crystallizing the silicon film by heating, a substantially monocrystalline silicon film is formed within a region centered on the concave portions. Using each of the substantially monocrystalline silicon film formed substantially centered around the respective concave portions, pixel circuits are formed.
摘要:
Aspects of the invention can provide a fingerprint sensor with high sensing precision. The fingerprint sensor according to the invention can include capacitance detection circuits that output detection signals, which each correspond to a capacitance formed between a subject surface and the fingerprint sensor, to signal transmitting paths, and an amplification circuit that amplifies the detection signals outputted to the signal transmitting paths. The individual signal transmitting paths can be respectively connected to at least two capacitance detection circuits and the fingerprint sensor further includes a resetting means that resets the potential of the signal transmitting paths before the detection signals are outputted from the capacitance detection circuits to the signal transmitting paths.
摘要:
To provide a superior capacitance detecting device, a capacitance detecting device includes M row lines and N column lines that are arranged in a matrix, capacitance detecting elements provided at intersections therebetween, and power lines. The capacitance detecting element includes a signal detecting element and a signal amplifying element. The signal detecting element includes a capacitance detecting electrode, a capacitance detecting dielectric film, and a reference capacitor. The signal amplifying element is composed of a thin film semiconductor device having a gate electrode, a gate insulating film, and a semiconductor film, and an electrode of the reference capacitor is connected to the row line.
摘要:
An organic electroluminescent device, comprises a plurality of pixels each including a light-emitting element, and a drive device adjusting a light-emission period of the light-emitting element included in each of the pixels in accordance with a luminance ratio of an image to be displayed.
摘要:
An organic electroluminescent device including: a plurality of pixels, each having a red light emitting element to emit red light, a green light emitting element to emit green light, and a blue light emitting element to emit blue light; and a drive device adjusting a luminance ratio among the red light, the green light, and the blue light by adjusting light emitting time of each of the red light emitting element, the green light emitting element, and the blue light emitting element.
摘要:
According to the present invention, there is provided a semiconductor integrated circuit comprising: a power controller which outputs a voltage select signal for selecting one of at least two types of voltages; a power supply voltage controller which generates and outputs a power supply voltage at an arbitrary voltage change rate on the basis of the voltage select signal; and a circuit portion which receives the power supply voltage and performs processing, wherein said circuit portion keeps operating while said power supply voltage controller is outputting the power supply voltage generated at the arbitrary voltage change rate.
摘要:
The present invention teaches a method and an apparatus for manufacturing a three-dimensional object having a smooth outer surface, without any step of removing a surface layer each time a sintered layer is formed so as to manufacture a three-dimensional object consisting of integrally built-up sintered layers. The method may include the steps of: (i) supplying powder particles (10) onto a moving area while heating the powder particles (10) with heat (20) from a high-density energy heat source so as to form a sintered layer (16); and (ii) supplying powder particles 10 onto a moving area on the sintered layer while heating the powder particles (10) with heat (20) from the high-density energy heat source so as to form another sintered layer (18) integrally on the sintered layer (16), wherein the step (ii) is repeated a predetermined number of times.
摘要:
Aspects of the invention provide a superior electrostatic capacitance detecting device. The electrostatic capacitance detection device can include M number of row lines, N number of column lines, and electrostatic capacitance detecting devices formed at intersections of these lines. The electrostatic capacitance detecting element can include a signal detection element, a signal amplifying element, a column selecting element, and a row selecting element, and the signal detection element can include a capacitance detecting electrode, a capacitance detecting dielectric layer, and a reference capacitor, and one electrode of the reference capacitor connects to a column line.