摘要:
An organic light emitting display device may include: a substrate having first, second and third pixel regions. A first electrode layer may be formed in each of the first, second and third pixel regions on the substrate. A hole injection layer may be formed over an entire surface of the substrate on the first electrode layers. A first hole transport layer may be formed on the first electrode layers in the first, second and third pixel region. A second hole transport layer may be formed on the first hole transport layer in any two adjacent pixel regions among the first, second and third pixel regions. A third hole transport layer may be formed on the second hole transport layer in any one of the two adjacent pixel region. A first, second and third organic emission layers may be formed on the first, second and third hole transport layer. A second electrode layer may be formed on the first, second and third organic emission layers. An OLED configured in this or a similar manner benefits from uniform operating characteristics and reducing tac time.
摘要:
A blue phosphorescent compound and an organic electroluminescent device using the same are provided. The blue phosphorescent compound can emit deep blue light and can improve color purity and reduce power consumption when used in an organic electroluminescent device.
摘要:
An organic electroluminescence device, and a method of manufacturing the same, where the device includes a substrate, a first electrode formed on the substrate, an organic layer formed on the first electrode and including at least an organic light-emitting layer, and a second electrode formed on the organic layer. The second electrode is made of an Mg—Ag layer having a thickness in a range of 170 Å to 200 Å.
摘要:
A top-emitting organic light emitting device having an improved pixel electrode layout for decreasing photo-leakage of a thin film transistor and enhancing an aperture ratio is provided. In the top-emitting organic light emitting device, the pixel electrode is designed to have the maximum size allowed by a layout design rule. Further, the pixel electrode is formed to overlap all the thin film transistors below.
摘要:
Provided is an electroluminescent display device having a negligibly small voltage drop of a cathode, no external light reflection, and high contrast and luminance. The electroluminescent display device includes a rear substrate, a first electrode layer formed above the rear substrate, a second electrode layer formed above the first electrode layer, the second electrode layer facing the first electrode layer, a light-emitting layer interposed between the first electrode layer and the second electrode layer, the light-emitting layer having at least an emission layer, a front substrate facing the rear substrate and contacting an upper surface of the second electrode layer, and a functional thin film formed between the second electrode layer and the front substrate, the functional thin film having a conductive material at least in a portion thereof contacting the second electrode layer.
摘要:
An organic light emitting device and a method of fabricating the same are disclosed. The organic light emitting device includes an anode and a cathode that comprises a magnesium-calcium layer. An organic layer having at least an organic emission layer is interposed between the anode and the cathode. The organic light emitting device may have reduced driving voltage characteristics, increased luminous efficiency characteristics, and improved lifespan characteristics without forming a separate electron injection layer because of the excellent electron injection characteristics.
摘要:
A flat panel display includes a pixel electrode, an organic emission layer, an opposite electrode, a phase shift layer and a reflecting layer disposed on a substrate. The phase shift layer and the reflecting layer are stacked on the opposite electrode to destructively interfere with reflected external light to realize black and achieve excellent luminous efficiency.
摘要:
The present invention provides an organic electroluminescent display device and a method of preparing the same. The organic electroluminescent display device may include a first electrode formed on a substrate. A second electrode may be formed so as to be insulated from the first electrode. One or more organic layers may be interposed between the first electrode and the second electrode and include at least an emission layer. One layer or a plurality of layers may be formed on the second electrode and comprise a material or materials having a refractive index higher than a refractive index used to form a material that comprise the second electrode. An organic electroluminescent display device fabricated in this matter has improved efficiency of light extraction. Such a device also resists infiltration of moisture and oxygen to a luminous part of the device that includes the first electrode, the second electrode, and the organic layer.
摘要:
An organic electroluminescence (EL) display device having a portion emitting light toward a side of a substrate and a portion emitting light toward another side of the substrate. The organic EL display device includes a substrate, a first organic light emitting unit formed on the substrate, and a second organic light emitting unit formed on the substrate and adjacent to the first organic light emitting unit. The first organic light emitting unit and the second organic light emitting unit emit light in different directions.
摘要:
A pixel driving circuit for a display device in which a plurality of gate lines and data lines are arranged. The pixel circuit is disposed at an intersection between the gate lines and data lines, and includes at least two light emitting elements for emitting certain colors within a certain section; an active device commonly connected to the at least two light emitting elements to drive the at least two light emitting elements; and an power source control part connected to the active device to transmit driving control signals for the at least two light emitting elements to the active device. The active device sequentially drives the at least two light emitting elements in the certain section per a certain period of time in response to the power source signals transmitted through the power source control part, and the at least two light emitting elements are sequentially emitted.