Abstract:
A method is disclosed, comprising: sending position information reflecting a current position of a base station to a coordinating server; receiving a warning request message from an operator core network containing an emergency area; calculating a geographic area corresponding to an emergency tracking area by translating the emergency area from a set of base stations to the geographic area; determining whether the base station may be outside of a threshold distance from the geographic boundary of the emergency tracking area; and sending the warning request message when the base station may be within the threshold distance from the geographic boundary of the emergency tracking area.
Abstract:
A method for scheduling resources in a network where the scheduling activity is split across two nodes in the network is disclosed, comprising: receiving, from a local scheduler in a first radio access network, access network information at a global scheduler; accessing information regarding a second radio access network allocating, at the global scheduler, resources for secondary allocation by the local scheduler; applying a hash function to map the allocated resources for secondary allocation to a set of hash values; and sending, from the global scheduler, the set of hash values to the local scheduler.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
Systems and methods for cell ID disambiguation are described. In one embodiment, a method may be disclosed for constructing a neighbor table, comprising: receiving, at a mobile base station, a physical cell identifier (PCI) of a detected neighbor base station from a user equipment (UE); receiving a global positioning system (GPS) position of the mobile base station; and associating the GPS position of the mobile base station with the PCI of the detected neighbor base station in a neighbor table.
Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
Systems and methods for a self-calibrating and self-adjusting network are disclosed. In one embodiment, a method is disclosed, comprising: obtaining a signal strength parameter for a mobile device at a base station; obtaining a position of the mobile device at the base station; and associating the position and the signal strength parameter in a database. The method may further comprise one or more of: adjusting transmission power for the mobile device at the base station based on the associated position and signal strength parameter; computing the position of the mobile device at the base station; calculating an average of the signal strength parameter over a time window, and storing the average associated with the position. The signal strength parameter may include at least one of a block error rate (BLER) and a radio signal strength indicator (RSSI), and the position may be a global positioning system (GPS) position.
Abstract:
A gateway for X2 interface communication is provided, including: an X2 internal interface for communicating with, and coupled to, a plurality of radio access networks (RANs); and an X2 external interface for communicating with, and coupled to, a destination outside of the plurality of RANs, the X2 external interface further including a single X2 endpoint for the plurality of radio access networks, such that the X2 external interface provides a single interface for an external macro cell or core network to interact with the plurality of radio access networks. The gateway may further include a handover module for maintaining X2 signaling associations and transactions for incoming and outbound handovers, including X2 to S1 and S1 to X2 translation.
Abstract:
This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor receives an environmental condition for a mesh network. The processor may have measured the environmental condition, or it could have received it from elsewhere, e.g., internally stored information, a neighboring node, a server located in a computing cloud, a network element, user equipment (“UE”), and the like. After receiving the environmental condition, the processor evaluates it and determines whether an operational parameter within the mesh network should change to better optimize network performance.
Abstract:
This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor receives an environmental condition for a mesh network. The processor may have measured the environmental condition, or it could have received it from elsewhere, e.g., internally stored information, a neighboring node, a server located in a computing cloud, a network element, user equipment (“UE”), and the like. After receiving the environmental condition, the processor evaluates it and determines whether an operational parameter within the mesh network should change to better optimize network performance.
Abstract:
Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.