Abstract:
The present invention relates to a method and apparatus for efficiently controlling access for system load adjustment in mobile communication systems. In a wireless communication system according to one embodiment, the method for transmitting and receiving data by a terminal including a user equipment (UE) non access stratum (NAS) and a UE access stratum (AS) includes the steps of: receiving by the UE AE, information including emergency call-related information which includes barring information by type for the emergency call, from a base station; transmitting, by the UE NAS, a service request for the emergency call to the UE AS; and determining, by the UE AS, whether to bar the service request on the basis of emergency call-related information. According to one embodiment, during the emergency call transmission, network congestion can be easily controlled by enabling various types of emergency calls to be transmitted, and enabling access to be barred information according to the situation of a communication network and types of emergency calls. Also, even when a specific type of emergency call is barred from access, the terminal can change to another type of emergency call and try for access. Therefore, it is effective in that an emergency call can be transmitted in various schemes even in a state where the network is congested.
Abstract:
The present disclosure relates to a method and apparatus for effectively reducing power consumption of a terminal in a mobile communication system. A method of controlling a discontinuous reception operation of a signal for a terminal in a wireless communication system includes the steps of: measuring velocity-related information of the terminal; transmitting the measured velocity-related information to a base station; receiving from the base station, in response to the transmission of the velocity-related information, discontinuous reception operation set information for a variable discontinuous reception operation; and performing the discontinuous reception operation according to the received discontinuous reception operation set information.
Abstract:
The present invention relates to a method and apparatus for efficiently controlling access for system load adjustment in mobile communication systems. A method for transmitting and receiving data by a terminal including a user equipment (UE) non access stratum (NAS) and a UE access stratum (AS) includes the steps of: receiving by the UE AE, information including emergency call-related information which includes barring information by type for the emergency call, from a base station; transmitting, by the UE NAS, a service request for the emergency call to the UE AS; and determining, by the UE AS, whether to bar the service request on the basis of emergency call-related information. During an emergency call transmission, network congestion can be easily controlled by enabling various types of emergency calls to be transmitted, and enabling access to be barred information according to the situation of a communication network and types of emergency calls.
Abstract:
A method, performed by a user equipment (UE), of transmitting and receiving signals in a wireless communication system, according to an embodiment, includes receiving a logical channel release request from a next-generation node B (gNB), determining a logical channel to release, an operation mode of the logical channel to release, and whether a packet data convergence protocol (PDCP) layer apparatus connected to the logical channel is re-established, based on the logical channel release request, and performing PDCP data recovery based on the determination result.
Abstract:
Provided is a method for performing uplink data compression (UDC) by a user equipment (UE). The method includes receiving configuration information on UDC; generating a first UDC packet by compressing uplink data, based on the configuration information on UDC; transmitting the first UDC packet; receiving, from the base station, packet data convergence protocol (PDCP) layer control information including checksum error information about whether a checksum error has occurred in the first UDC packet; and resetting a UDC buffer used in compressing the uplink data, based on the PDCP layer control information.
Abstract:
The present invention defines an efficient measurement method for idle mode M2M/MTC device with low/no mobility in a mobile communication system. An example of the mobile communication system to which the present invention is application is 3GPP UMTS mobile communication system and 3GPP LTE/LTE-A mobile communication system as the next generation mobile communication system under discussion in 3GPP.
Abstract:
The present invention relates to a method and apparatus for transmitting data using a multi-carrier in a mobile communication system. The method of transmitting data in user equipment of a wireless communication system using a carrier aggregation technique according to an embodiment of the present invention includes the steps of setting secondary cells included in an S-TAG (Secondary-Timing Advance Group) configured of only secondary cells (SCells), deactivating a downlink timing reference cell in the S-TAG; determining whether other activated secondary cells exist besides the deactivated downlink timing reference cell in the S-TAG, and when the other activated secondary cells exist in the S-TAG, setting one of the other activated secondary cells as a new downlink timing reference cell. According to the present invention, uplink transmission speed can be increased in the user equipment and user QoS can be improved by transmitting data using one or more uplink carriers in the terminal.
Abstract:
According to one embodiment of the present disclosure, the method by means of which a mobility management entity (MME) determines the communication mode of a terminal in a communication system includes the steps of: receiving, from the terminal, an access request including information on the position of the terminal; transmitting a message to a home subscriber server (HSS) on the basis of the received access request; receiving, from the HSS, specific position information for setting a first mode; comparing the information on the position of the terminal with the specific position information; and determining the communication mode of the terminal according to the result of the comparison. According to the present disclosure, the frequent transmission of small amounts of data can be supported in an efficient manner.
Abstract:
The present disclosure relates to a method and apparatus for transmitting data using a multi-carrier in a mobile communication system. The method of transmitting data in user equipment of a wireless communication system using a carrier aggregation technique according to an embodiment of the present disclosure includes the steps of setting secondary cells included in an S-TAG (Secondary-Timing Advance Group) configured of only secondary cells (SCells), deactivating a downlink timing reference cell in the S-TAG; determining whether other activated secondary cells exist besides the deactivated downlink timing reference cell in the S-TAG, and when the other activated secondary cells exist in the S-TAG, setting one of the other activated secondary cells as a new downlink timing reference cell. According to the present disclosure, uplink transmission speed can be increased in the user equipment and user QoS can be improved by transmitting data using one or more uplink carriers in the terminal.
Abstract:
The present invention relates to a method and apparatus for transmitting data using a multi-carrier in a mobile communication system. The method of transmitting data in user equipment of a wireless communication system using a carrier aggregation technique according to an embodiment of the present invention includes the steps of setting secondary cells included in an S-TAG (Secondary-Timing Advance Group) configured of only secondary cells (SCells), deactivating a downlink timing reference cell in the S-TAG; determining whether other activated secondary cells exist besides the deactivated downlink timing reference cell in the S-TAG, and when the other activated secondary cells exist in the S-TAG, setting one of the other activated secondary cells as a new downlink timing reference cell. According to the present invention, uplink transmission speed can be increased in the user equipment and user QoS can be improved by transmitting data using one or more uplink carriers in the terminal.