Abstract:
Methods and apparatuses are provided for wireless communication. A scheduling message including resource allocation information to allocate a resource for uplink transmission, is received. Data and a pilot are transmitted via the allocated resource for uplink transmission. An ACK/NACK resource is identified based on an index of the allocated resource for uplink transmission and information associated with the transmitted pilot. An ACK/NACK signal is received in response to the transmitted data using the identified ACK/NACK resource.
Abstract:
The present invention is a method in which a base station transmits a control channel signal in an orthogonal frequency division multiplexing (OFDM) communication system, wherein the method configures a physical resource block (PRB) from multiple resource elements (REs) for a control channel signal for scheduling, allocates at least one RE to a response channel signal, the at least one RE occupying the time domain the same as that of the RE used in a resource signal transmission in a data channel region of the PRB and occupying the frequency domain nearest to the RE used in the reference signal transmission, and transmits the control channel signal for scheduling and the response channel signal.
Abstract:
An apparatus and method are provided for transmitting a symbol group in a mobile communication system. The method includes generating a symbol group to which an orthogonal sequence is applied; mapping the generated symbol group to an Orthogonal Frequency Division Multiple (OFDM) symbol based on a symbol group index and a Physical HARQ Indicator Channel (PHICH) group index; and transmitting the mapped symbol group. The generated symbol group is mapped to the OFDM symbol in an alternating pattern in accordance with the symbol group index.
Abstract:
The present invention provides a method and apparatus for transmitting an ACK/NACK in a TDD system. A component carrier (CC) configuration for a user equipment (UE) and a transmission mode of each CC are received. An ACK/NACK feedback mode is selected based on an overhead status for feedback in an uplink. An ACK/NACK is processed according to the selected feedback mode. And the ACK/NACK is transmitted in the uplink. The method provided by the present invention can avoid excessive overhead for feedback in uplink in various extreme circumstances while ensuring satisfying performances of downlinks under many configurations.
Abstract:
A method is provided for transmitting uplink control information by a terminal in a cellular communication system. The method includes receiving system information associated with uplink transmission of a Sounding Reference Signal (SRS) from a base station; determining an orthogonal sequence having a first length or a second length predefined; transmitting uplink control information to which a first orthogonal sequence is applied, if the first orthogonal sequence having the first length is determined; and transmitting uplink control information to which a second orthogonal sequence is applied, if the second orthogonal sequence having the second length is determined. The SRS is selectively transmitted with the uplink control information, based on the received system information, and the uplink control information, to which the first orthogonal sequence having the first length is applied, is transmitted regardless of whether or not the SRS is transmitted in a corresponding slot.
Abstract:
A method and apparatus are provided for transmitting and receiving control information. A method in a base station includes transmitting, to a terminal, information associated with a resource region carrying a control channel; transmitting, to the terminal, a plurality of values associated with control channel candidates, each of the plurality of values corresponding to each of a plurality of numbers associated with CCEs constituting one control channel candidate, wherein the each of the plurality of values indicates a number of control channel candidates to be monitored by the terminal; determining a set of control channel candidates based on an ID of the terminal and at least one of the plurality of values associated with the control channel candidates; selecting at least one control channel candidate from among the set of control channel candidates; and transmitting the control information to the terminal through the at least one selected control channel candidate in the resource region.
Abstract:
Methods and apparatuses are provided for transmitting and receiving control information. A method for transmitting control information, performed by a base station, includes transmitting, to a terminal, information associated with a resource region carrying a control channel; transmitting, to the terminal, by upper layer signaling, a plurality of values associated with control channel candidates, each of the plurality of values corresponding to each of a plurality of numbers associated with CCEs constituting one control channel candidate, wherein the each of the plurality of values indicates a number of control channel candidates to be monitored by the terminal; determining a set of control channel candidates based on an ID of the terminal and at least one of the plurality of values associated with the control channel candidates; selecting at least one control channel candidate from among the set of control channel candidates; and transmitting the control information to the terminal through the at least one selected control channel candidate in the resource region.
Abstract:
Disclosed are: a communication technique for merging, with the Internet of Things (IoT) technology, a 5th-generation (5G) communication system for supporting a data transmission rate higher than that of a 4th-generation (4G) system; and a system therefor. The disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retailing, security and safety related services) on the basis of 5G communication technology and IoT related technology. One embodiment of the present invention enables a terminal to receive at least one reference signal from a base station in a mobile communication system, and to generate channel state information on the basis of the at least one reference signal so as to transmit the channel state information to the base station, wherein the at least one reference signal is received in a downlink pilot time slot (DwPTS) by using a resource determined on the basis of a special subframe configuration.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided for supporting a higher data transfer rate beyond a 4G communication system such as LTE. According to the present disclosure, there is provided a method for supporting repetitive transmission of uplink data by a base station in a mobile communication system operating in a time division duplex (TDD) based cell including at least one subframe for uplink transmission and at least one subframe for downlink transmission comprising repeatedly transmitting uplink data scheduling information in a downlink subframe where an uplink hybrid automatic repeat request (HARQ) process is defined and repeatedly receiving uplink data in uplink subframes which start from an uplink subframe according to an HARQ transmission timing of an HARQ process defined in a downlink subframe where the repetitive transmitting of the uplink data scheduling information is complete.
Abstract:
Disclosed are a method and apparatus for controlling interference between Internet of Things (IoT) devices. The method for controlling interference between IoT devices includes: selecting a device that will execute interference avoidance among devices that are capable of performing an inter-thing communication by taking a traffic type into consideration; and receiving interference avoidance information required for the interference avoidance from the device that will execute the interference avoidance. The interference avoidance information includes offset information representing a starting time.