Abstract:
A method for implementing uplink transmission in a flexible frequency division duplex (FDD) system is provided. A flexible FDD supported user equipment (FFUE) receives signaling from an evolved node B (eNB), obtains an uplink carrier configuration, and performs physical uplink shared channel (PUSCH) transmission by way of synchronous HARQ of 8 ms, synchronous HARQ of 10 ms, or asynchronous hybrid automatic repeat request (HARQ). According to the solution provided by the present invention, uplink transmission in the FDD system can be realized with low complexity, and the system performance of the FDD system is improved.
Abstract:
A method for an uplink transmission of a user equipment (UE) in a wireless communication system and the UE are provided. The method includes receiving, from a base station (BS), control signaling; grouping physical downlink shared channels (PDSCHs) based on the control signaling; determining a hybrid automatic repeat request acknowledgement/negative acknowledgement (HARQ-ACK/NACK) codebook for each grouping of the PDSCHs; and transmitting HARQ-ACK/NACK information corresponding to the HARQ-ACK/NACK codebook. The UE includes a transceiver configured to receive control signaling from a BS; and a processor configured to: group PDSCHs based on the control signaling; and determine an HARQ-ACK/NACK codebook for each group of PDSCHs, wherein the transceiver is further configured to transmit HARQ-ACK/NACK information corresponding to the HARQ-ACK/NACK codebook.
Abstract:
The provided is a method for transmitting HARQ-ACK in a LTE system, which is applicable to a situation that an uplink subframe is occupied in an FDD or TDD system. The method is implemented as follows. A UE receives information from an eNB, and determines the assignment of uplink subframes in a cell. The UE determines the transmission of HARQ-ACK according to the assignment of uplink subframes in the cell. By the provided method, the transmission of HARQ-ACK of PDSCH is less influenced when an uplink subframe in the FDD or TDD system is occupied.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a power adjusting method and corresponding to control node and UE. According to the present disclosure, interference to adjacent devices of the same or different wireless access techniques may be avoided, uplink scheduling efficiency of the UE may be increased, and therefore the efficiency of the whole network is increased.
Abstract:
The present disclosure provides several methods, user equipment (UEs) and base stations for transmitting uplink signals. After receiving uplink synchronization command information, the UE may transmit an uplink signal on at least one idle unlicensed cell. Besides, the UE may try to transmit the uplink signal on multiple uplink signal resources within an uplink signal transmission window. By using the present disclosure, transmission probability of uplink signals may be improved, and time delay of uplink synchronization may be shortened.
Abstract:
The present disclosure relates to a sensor network, machine type communication (MTC), machine-to-machine (M2M) communication, and technology for interne of things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method of synchronizing device to device (D2D) terminals. Under partial coverage (PC) scenarios, an in coverage user equipment (ICUE) may send a D2D synchronization signal (D2DSS) and a physical sidelink broadcast channel (PSBCH) on synchronization resources of a cell to implement mutual discovery of an ICUE and an out of coverage user equipment (OCUE) when a condition for triggering the D2DSS is satisfied.
Abstract:
The present disclosure provides a hybrid duplex communication method and apparatus. Configuration information is obtained. The configuration information includes locations of special sub-frames on the first carrier, and a transmission direction of each sub-frame on the second carrier. Sounding Reference Symbol (SRS) is sent on a special sub-frame. when all sub-frames on the second carrier are UL sub-frames, the UE may communicate with the BS on the first carrier and the second carrier according to the FDD mode; when the second carrier is used for UL and DL transmission in time division multiplexing mode, the UE may communicate with the BS on DL resources of the first carrier and UL resources of the second carrier according to the FDD mode, and/or, the UE may communicate with the BS on DL resources of the second carrier and UL resources of the second carrier according to the TDD mode.
Abstract:
The present invention provides an apparatus and method for uplink signal power control in a dynamic Time Division Duplexing (TDD) cell. According to the method, after accessing a dynamic TDD cell, a User Equipment (UE) receives from an evolved NodeB (eNB) an uplink power control parameter which has been adjusted for a conflict uplink sub-frame.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments of the present invention provide a method for transmitting a signal, comprising: selecting a starting position of the signal from a set of candidate starting positions for transmitting the signal; determining a symbol mapping of the signal based on a selected starting position or a set of candidate starting positions of the signal; and transmitting the signal is based on the symbol mapping. The embodiment of the invention also provides a corresponding apparatus.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for monitoring a carrier and transmitting a signal over an unlicensed band.