Abstract:
An apparatus includes a write pole proximate a media-facing surface of a recording head. A near-field transducer is adjacent to the write pole. A waveguide has a core layer extending from an energy source to the media-facing surface. The core layer includes a region of reduced downtrack thickness proximate the near-field transducer. The region of reduced downtrack thickness is defined by a notch facing away from the near-field transducer. A material of the notch has a different index of refraction than an index of refraction of the core layer.
Abstract:
Disclosed are plasmonic near-field transducers that are useful in heat-assisted magnetic recording. The disclosed plasmonic near-field transducers have an enlarged region and a flared region. In some embodiments the disclosed plasmonic near-field transducer can also include a peg region. The flared region can act as a heat sink and can lower the thermal resistance of the peg region of the near-field transducer, thus reducing its temperature. Also disclosed are methods that include delivering light to a magnetic transducer region via a waveguide, receiving the light at a plasmonic near-field transducer having an output end and disposed in proximity to the magnetic transducer region, and delivering a surface plasmon-enhanced near-field radiation pattern proximate the output end of the plasmonic transducer in response to receiving the light.
Abstract:
A method and apparatus provide for determining a temperature at a junction of a laser diode when the laser diode is operated in a lasing state that facilitates heat-assisted magnetic recording, comparing the junction temperature and an injection current supplied during the lasing state to stored combinations of junction temperature and injection current, and determining a likelihood of mode hopping occurring for the laser diode during the lasing state based on the comparison to stored combinations of junction temperature and injection current.
Abstract:
A method and apparatus provide for determining a temperature at a junction of a laser diode when the laser diode is operated in a lasing state that facilitates heat-assisted magnetic recording, comparing the junction temperature and an injection current supplied during the lasing state to stored combinations of junction temperature and injection current, and determining a likelihood of mode hopping occurring for the laser diode during the lasing state based on the comparison to stored combinations of junction temperature and injection current.
Abstract:
A magnetic head includes a read transducer and a write transducer at a media-facing surface of the magnetic head. The magnetic head includes at least one heater that causes heat deformation at the media-facing surface in response to different first and second energizing currents. The first energizing current results in a first close point between the media-facing surface and a recording medium. The second energizing current results in a second close point between the media-facing surface and the recording medium. The second close point is at a different location in the media-facing surface than the first close point.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
Embodiments are directed to an apparatus having an air-bearing surface that is configured to interact with magnetic medium. The apparatus includes a waveguide and a plasmonic near-field transducer positioned at or near the air-bearing surface. The plasmonic near-field transducer is operatively coupled to the waveguide. The plasmonic near-field transducer includes an enlarged region and a peg region. The peg region extends from the enlarged region towards the air-bearing surface. The peg region has at least a portion of a periphery of its cross-sectional shape include curvature or at least one substantially obtuse angle.
Abstract:
A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
A near field transducer with a peg region, an enlarged region disposed adjacent the peg region, and a barrier material disposed between the peg region and the enlarged region. The barrier material reduces or eliminates interdiffusion of material between the peg region and the enlarged region.