摘要:
Techniques for quickly and efficiently performing handover are described. A user equipment (UE) may maintain a link with a serving cell and may communicate with this cell via the established link. The UE may have a candidate set of non-serving cells that are candidates for handover. The UE may maintain uplink synchronization with one or more non-serving cells in the candidate set, without having to maintain links with any of the non-serving cells. The UE may update uplink synchronization with the non-serving cells via an access procedure, e.g., send access probes to the non-serving cells and receive timing adjustments from these cells. One non-serving cell with which the UE has maintained uplink synchronization may be selected as a target cell for handover. The UE may then perform handover from the serving cell to the target cell, without performing uplink synchronization during the handover, which may improve handover latency and success rate.
摘要:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
摘要:
Exemplary embodiments are directed to wireless power. A method may comprise receiving wireless power with a receiver and charging an accumulator with energy from the received wireless power. The method may further include conveying energy from the accumulator to an energy storage device upon a charging level of the accumulator reaching a threshold level.
摘要:
Feedback from user stations to the base station for a multicast/broadcast transmission is performed by decoding multicast/broadcast data received from a transmitter on a downlink resource, forming a feedback message corresponding to the reception of the multicast/broadcast data, and queuing the feedback message for transmission to the transmitter on an uplink resource. The uplink resource used corresponds to the downlink resource used for the multicast/broadcast transmission. For unicast transmissions the uplink resource is dedicated to an uplink transmission corresponding to a downlink transmission on the downlink resource.
摘要:
Techniques for performing in-order data delivery during handover in a wireless communication system are described. A user equipment (UE) may perform handover from a source base station to a target base station. The target base station may start a timer after a data path from a gateway to the UE has been switched from the source base station to the target base station. The target base station may receive forwarded packets for the UE from the source base station and may receive new packets for the UE from the gateway. The target base station may send the forwarded packets received prior to expiration of the timer to the UE before any new packets. The target base station may send the forwarded packets to the UE without waiting for the timer to expire and may send the new packets to the UE after the timer expires.
摘要:
Techniques for performing handover in order to maintain call continuity for a user equipment (UE) are described. The UE may communicate with a first cell in a radio access network (RAN) for a packet-switched (PS) call, e.g., for Voice-over-Internet Protocol (VoIP) via High-Speed Packet Access (HSPA) in W-CDMA. The UE may send measurement reports to the RAN and may receive trigger from the RAN. The UE may establish a circuit-switched (CS) call with the first cell while the PS call is pending at the first cell. The PS call and the CS call may be for a voice call, and the UE may switch data path for the voice call from the PS call to the CS call and then terminate the PS call. The UE may then perform handover of the CS call from the first cell to a second cell, which may not support VoIP.
摘要:
An apparatus, method, processor(s), and computer program product avoids user data loss by network-controlled, user equipment assisted handover in a wireless data packet communication system. A wireless receiver receives radio link control (RLC) packet data units (PDUs) from user equipment (UE) being served by a source node. A wireless transmitter commands the UE to handover. A network communication interface transmits RLC Uplink (UL) context from the source node to the target node, and transmits RLC Downlink (DL) initialization message and buffered in-transit DL RLC PDUs from the source node to the target node.
摘要:
Techniques for sending data during handover with Layer 2 tunneling are described. In one design, a user equipment (UE) sends first Layer 2 packets to a source base station prior to handover to a target base station. The UE sends at least one second Layer 2 packet to the target base station, which identifies the second Layer 2 packet(s) as being intended for the source base station and thus forwards the second Layer 2 packet(s) to the source base station via a Layer 2 tunnel. The UE sends third Layer 2 packets to the target base station after the handover. The target base station processes the third Layer 2 packets to obtain IP packets and sends the IP packets to a serving gateway after a trigger condition, which may be defined to achieve in-order delivery of IP packets from the source and target base stations to the serving gateway.
摘要:
Systems and methodologies are provided that facilitate security activation for wireless communications. In an aspect, a method for wireless communication is provided which includes determining a first security key for communicating with a source access point and receiving, from the source access point, a handover command that includes an indication of whether to apply a second security key upon handover. The method also includes handing over communication from the source access point to a target access point, where the second security key is applied for communicating with the target access point upon the handover when the handover command indicates to apply the second security key.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.