摘要:
A display having data lines that can be configured between a display mode and a touch mode is disclosed. The display can have sense regions for sensing a touch or near touch on the display during the touch mode. These same regions can display graphics or data on the display during the display mode. During display mode, the data lines in the sense regions can be configured to couple to display circuitry in order to receive data signals from the circuitry for displaying. During touch mode, the data lines in the sense regions can be configured to couple to corresponding sense lines in the regions, which in turn can couple to touch circuitry, in order to transmit touch signals to the circuitry for sensing a touch or near touch. Alternatively, during touch mode, the data lines in the sense regions can be configured to couple to ground in order to transmit residual data signals to ground for discarding.
摘要:
A gate driver circuit for switching gate line voltage supplies between display and touch modes is disclosed. The circuit can include one or more switches configured to switch one or more gate lines of an integrated touch sensitive display between a display mode and a touch mode. During touch mode, the circuit can be configured to switch the gate lines to connect to a more stable voltage supply. The circuit can also be configured to reduce or eliminate interference from the display circuitry to the touch circuitry that could affect touch sensing. During display mode, the circuit can be configured to switch the gate lines to connect to a fluctuating voltage supply.
摘要:
A self-aligned LDD TFT and a fabrication method thereof. A substrate is provided, on which a semiconductor layer is formed. A first masking layer is provided over a first region of the portion of the semiconductor layer. The first masking layer includes a material that provides a permeable barrier to a dopant. The semiconductor layer including the first region covered by the first masking layer is exposed to the dopant, wherein the first region covered by the first masking layer is lightly doped with the dopant in comparison to a second region not covered by the first masking region.
摘要:
Touch regions in a diamond configuration in a touch sensitive device are disclosed. Touch regions can include drive regions of display pixels to receive stimulation signals and sense regions of display pixels to send touch signals based on a touch or near touch. The drive regions and sense regions can be disposed diagonally adjacent to each other to form a diamond configuration. In an example diamond configuration, diagonal drive regions can be separate and unconnected from each other, while diagonal sense regions can be electrically connected to each other via their sense lines. The diagonal sense region connections can be in a forward diagonal direction, a backward diagonal direction, or a combination thereof. In an alternate example diamond configuration, diagonal drive regions can be electrically connected to each other via their drive lines, while diagonal sense regions can be electrically connected to each other via their sense lines. The diagonal drive and sense region connections can be in a forward diagonal direction, a backward diagonal direction, or combinations thereof. An exemplary touch sensitive device having a diamond configuration can be a touch screen.
摘要:
A method is provided for fabricating thin-film transistors (TFTs) for an LCD having an array of pixels. The method includes depositing a first photoresist layer over a portion of a TFT stack that includes a conductive gate layer, and a semiconductor layer. The method also includes doping the exposed semiconductor layer with a first doping dose. The method further includes etching a portion of the conductive gate layer to expose a portion of the semiconductor layer, and doping the exposed portion of the semiconductor layer with a second doping dose. The method also includes depositing a second photoresist layer over a first portion of the doped semiconductor layer in an active area of the pixels to expose a second portion of the doped semiconductor layer in an area surrounding the active area, and doping the second portion of the doped semiconductor layer with a third doping dose.
摘要:
With respect to liquid crystal display inversion schemes, a large change in voltage on a data line can affect the voltages on adjacent data lines due to capacitive coupling between data lines. The resulting change in voltage on these adjacent data lines can give rise to visual artifacts in the data lines' corresponding sub-pixels. Various embodiments of the present disclosure serve to prevent or reduce persisting visual artifacts by offsetting their effects or by distributing their presence among different colored sub-pixels. In some embodiments, this may be accomplished by using different write sequences during the update of a row of pixels.
摘要:
Reduction of the effects of differences in parasitic capacitances in touch screens is provided. A touch screen can include multiple display pixels with stackups that each include a first element and a second element. For example, the first element can be a common electrode, and the second element can be a data line. The display pixels can include a first display pixel including a third element connected to the first element, and the third element can contribute to a first parasitic capacitance between the first and second elements of the first display pixel, for example, by overlapping with the second element. The touch screen can also include a second display pixel lacking the third element. The second display pixel can include a second parasitic capacitance between the first and second elements of the second display pixel. The first and second parasitic capacitances can be substantially equal, for example.
摘要:
A self-aligned LDD TFT and a fabrication method thereof. The method includes providing a semiconductor layer. A first masking layer is provided over a first region of the semiconductor layer, said first masking layer comprising a material that provide a permeable barrier to a dopant. The semiconductor layer is exposed, including the first region covered by the first masking layer, to the dopant, wherein the first region covered by the first masking layer is lightly doped with the dopant in comparison to a second region not covered by the first masking layer.
摘要:
A circuit for switching an LCD between display and touch modes is disclosed. The circuit can include one or more switches configured to switch one or more drive, sense, and data lines in LCD pixels according to the mode. During touch mode, the circuit switches can be configured to switch one or more drive lines to receive stimulation signals, one or more sense lines to transmit touch signals, and one or more data lines to transmit residual data signals. During display mode, the circuit switches can be configured to switch one or more drive lines and sense lines to receive common voltage signals and one or more data lines to receive data signals. The circuit can be formed around the border of the LCD chip or partially or fully on a separate chip.
摘要:
Disclosed embodiments relate to a thin-film transistor (TFT) for use in a display device. The display device may include a liquid crystal display (LCD) panel having multiple pixels arranged in rows and column, with each row corresponding to a gate line and each column corresponding to a source line. Each of the pixels includes a pixel electrode and a TFT. The TFT may include a metal oxide semiconductor channel between a source and drain. For each TFT, holes may be formed in the gate line in a region beneath the source and/or the drain. The holes may be formed such that the source and drain only partially overlap the holes. The presence of the holes reduces the area of the gate line, which may reduce parasitic capacitance and improve loading. This may provide improved panel performance, which may reduce the appearance of certain visual artifacts.