Abstract:
An ionic device includes a layer of an ionic conductor containing first and second species of impurities. The first species of impurity in the layer is mobile in the ionic conductor, and a concentration profile of the first species determines a functional characteristic of the device. The second species of impurity in the layer interacts with the first species within the layer to create a structure that limits mobility of the first species in the layer.
Abstract:
An apparatus for use in sensing applications includes a substrate and a plurality of clusters arranged in an aperiodic configuration on the substrate, wherein each of the plurality of clusters is formed of a plurality of Raman-active material nano-particles, and wherein each of the Raman-active material nano-particles is positioned in a substantially ordered configuration with respect to each other in each of the respective plurality of clusters.
Abstract:
A surface enhanced Raman spectroscopy calibration curve generating system includes a SERS sensor, which includes a substrate and a plurality of sensing members formed on the substrate. Each of the sensing members includes a plurality of SERS signal amplifying structures. An inkjet dispensing device is to dispense different concentrations of a solution including a known analyte of interest onto the respective sensing members to form a concentration dependent array. A Raman spectrometer is to interrogate the concentration dependent array. A processor is operatively connected to each of the inkjet dispensing device and the Raman spectrometer. Computer-readable instructions are embedded on a non-transitory, tangible computer-readable medium and are executable by the processor. The computer-readable instructions are to automatically generate an intensity profile as a function of concentration for the concentration dependent array.
Abstract:
Computer-implemented systems and methods are provided for reducing a number of options presented to a user where the options have characteristics that are arranged in a multi-dimensional hierarchical space. A system and method can be configured to identify common dimensions using dimension nodes in dimensional points and identify compatible nodes for each dimension in the multi-dimensional hierarchical space by determining whether an association exists. Compatible pairs of surviving points are generated after applying each of the compatible nodes from the common dimensions. Greatest lower bounds (GLBs) are computed for each of the generated compatible points, and a set of options is generated comprising points from the generated compatible points and the computed GLBs.
Abstract:
A surface enhanced Raman spectroscopy (SERS) probe apparatus and a method of SERS probing employ Raman-active surfaces of a plurality of nanoscale field concentrator (NFC) structures at a terminal end of an optical fiber. The SERS probe apparatus includes an optical fiber having an optical path and a terminal end that terminates the optical path. The SERS probe apparatus further includes a plurality of NFC structures and nanoparticles on surfaces of the plurality of NFC structures. First ends of the NFC structures are adjacent to the terminal end of optical fiber. The nanoparticles are Raman active to an analyte.
Abstract:
An integrated device for enhancing signals in Surface Enhanced Raman Spectroscopy (SERS). The integrated device comprising an array of nanostructures comprising a material, wherein the material is configured to allow light to pass through. The integrated device also comprising SERS active nanoparticles disposed on at least portion of the array of nanostructures and a mirror integrated below a base of the array of nanostructures. The mirror is configured to reflect light passing through the material into the array of nanostructures.
Abstract:
Packaged NERS-active structures are disclosed that include a NERS substrate having a NERS-active structure thereon, and a packaging substrate over the NERS substrate having an opening therethrough, the opening in alignment with the NERS-active structure. A membrane may cover the opening in the packaging substrate. In order to perform nanoenhanced Raman spectroscopy, the membrane may be removed, and an analyte placed on the NERS substrate adjacent the NERS-active structure. The membrane may be replaced with another membrane after the analyte has been placed on the substrate. The membrane may maintain the pristine state of the substrate before it is deployed, and the replacement membrane may preserve the substrate and analyte for archival purposes. Also disclosed are methods for performing NERS with packaged NERS-active structures.
Abstract:
A compact sensor system comprising: an analysis cell configured for photon-matter interaction, where photons are received from a light source; and an integrated-optical spectral analyzer configured for identifying a set of frequencies, the integrated-optical spectral analyzer comprising: a waveguide coupled with the analysis cell, the waveguide configured for propagating a set of frequencies through the waveguide; one or more ring resonators coupled with the waveguide, the one or more ring resonators comprising a predetermined bandwidth and configured for capturing the set of frequencies corresponding to frequencies within the predetermined bandwidth; and one or more frequency detectors coupled with the one or more tunable ring resonators, the one or more frequency detectors configured for generating electrical signals that identify each of the set of frequencies.
Abstract:
A cleave plane is defined in a semiconductor donor body by implanting ions into the wafer. A lamina is cleaved from the donor body, and a photovoltaic cell is formed which comprises the lamina. The implant may cause some damage to the crystal structure of the lamina. This damage can be repaired by annealing the lamina using microwave energy. If the lamina is bonded to a receiver element, the receiver element may be either transparent to microwaves, or may reflect microwaves, while the semiconductor material absorbs the microwaves. In this way the lamina can be annealed at high temperature while the receiver element remains cooler.
Abstract:
A vibrating tip surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a nano-needle configured to vibrate. The apparatus includes the nano-needle with a substantially sharp tip at a free end opposite an end attached to a substrate. The tip is configured to adsorb an analyte. The apparatus further includes a vibration source configured to provide an alternating current (AC) electric field that induces a vibration of the free end and the tip of the nano-needle. Vibration of the nano-needle under the influence of the AC electric field facilitates detection of a Raman scattering signal from the analyte adsorbed on the nano-needle tip. The system further includes a synchronous detector configured to be gated cooperatively with the vibration of the nano-needle. The method includes inducing the vibration, illuminating the vibrating tip to produce a Raman signal, and detecting the Raman signal using the detector.