Abstract:
A digital image capture and processing system providing a high degree of adaptability to ambient illumination levels and having great dynamic range. The system includes a multi-mode illumination subsystem, having an active illumination mode and a passive illumination mode. During object illumination and image capturing operations, the exposure quality of a captured digital image is analyzed, and based on the results of such exposure quality analysis, system control parameters are automatically reconfigured. In the event that the exposure quality analysis indicates excessive exposure levels in a captured digital image, then a new set of SCPs is reconfigured, controlling the multi-mode illumination subsystem to operate in its passive illumination mode, whereby, ambient illumination flooding the field of view forms digital images in the image detection array during s object illumination and imaging operations.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of quasi-orthogonal laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
Novel POS-based bar code symbol reading systems are disclosed having an integrated customer-kiosk terminal. Also disclosed are novel POS-based bar code reading cash register Systems having integrated Intenet-enabled customer-kiosk terminals.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises plurality of groups of intersecting laser scanning planes that form a complex omni-directional 3-D laser scanning pattern within a 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at the POS station.
Abstract:
A bioptical holographic laser scanning system employing a plurality of laser scanning stations about a holographic scanning disc having scanning facets with high and low elevation angle characteristics, as well as positive, negative and zero skew angle characteristics which strategically cooperate with groups of beam folding mirrors having optimized surface geometry characteristics. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and, generate a 3-D omnidirectional laser scanning pattern between the bottom and side scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of pairs of quasi-orthogonal laser scanning planes, each composed by a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the bottom scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom scanning window.
Abstract:
Misreads in decodable indicia by terminals such as bar code scanners (e.g., laser, image sensors) can occur. Solutions can include increasing redundancy or screening out erroneous data. Embodiments of screening error reduction circuits, terminals, and/or methods for processing decodable indicia data are provided.
Abstract:
An improved laser scanning system is provided employing multiple off-center lasers and an irregular multi-sided scanning polygon, producing a laser scanning raster over a total sweep of approximately 180 degrees of polygon rotation (i.e. sweep), wherein the scanning region includes (i) a center scanning region with a first plurality of scanning lines, (ii) two mid scanning regions with a second plurality of scanning lines, and (iii) far left and right scanning regions each having a third plurality of scanning lines, to supports high (full) density, mid (2/3) density, and low (1/3) density scanning over the 180 degrees scanning region, for robust omni-directional scanning performance.
Abstract:
A decodable indicia reading terminal for reading a substrate bearing decodable indicia may include an imager-based scanner and a platter. The imager-based scanner may be disposed within a housing and include a multiple pixel image sensor and an imaging lens configured to focus an image on the decodable indicia on the image sensor. The platter may be on the housing, the platter may surround the image-based scanner, and the platter may have a texturized surface. The texturized surface of the platter may reduce the amount light being perceived when the light is reflected from the texturized surface compared to a platter having a brushed surface aligned in a substrate motion direction.