摘要:
An organic EL device 100 including a plurality of emitting layers (15) and (17) between a cathode (18) and (19) and an anode (12), each of the emitting layers (15) and (17) made of a host material having a triplet energy gap of 2.52 eV or more and 3.7 eV or less, and a dopant having a light emitting property related to a triplet state, the dopant containing a metal complex with a heavy metal.
摘要:
A metal complex compound having a special structure containing metals such as iridium. An organic electroluminescence device which comprises at least one organic thin film layer sandwiched between a pair of electrode consisting of an anode and a cathode, wherein the organic thin film layer comprises the above metal complex compound, which emits light by applying an electric voltage between the pair of electrode. An organic EL device employing the novel metal complex compound emits various phosphorous lights including blue light having an enhanced current efficiency and prolonged lifetime.
摘要:
Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
摘要:
The present invention provides an OLED in which an organic thin film layer comprising a single layer or plural layers between a cathode and an anode, wherein the organic thin film layer comprises at least one organic light emitting layer, wherein at least one light emitting layer comprises at least one host material and at least one phosphorescent emitter material, wherein the host material comprises a substituted or unsubstituted hydrocarbon compound having the chemical structure represented by the formula (A-I): formula (A-1) wherein R1 and R2 each represent independently a substituted or unsubstituted alkyl group having from 1 to about 5 carbon atoms; Ar1 represents a divalent residue of a benzene ring, a naphthalene ring, a chrysene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzo[a]triphenylene ring, a benzochrysene ring, a fluoranthene ring, a benzo[b]fluoranthene ring or picene ring; and Ar2 represents a monovalent residue of a naphthalene ring, a chrysene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzo[a]triphenylene ring, a benzochrysene ring, a fluoranthene ring, a benzo[b]fluoranthene ring or a picene ring; and Ar1 and Ar2 each may have independently one or plural substituent(s) selected from the group consisting of an alkyl group having 1 to about 3 carbon atoms, a cycloalkyl group having about 5 to about 7 ring-forming carbon atoms, a silyl group having about 3 to about 12 carbon atoms, a cyano group, a halogen atom and an aryl group having about 6 to about 16 ring-forming carbon atoms; and the phosphorescent emitter material comprises a phosphorescent organometallic complex having a substituted chemical structure represented by one of the following partial chemical structures represented by the formulae: formulae (I), (II), (III) wherein R is independently hydrogen or an alkyl substituent having 1-3 carbon atoms, and wherein at least one ring of the formula has one or more of said alkyl substituent.
摘要:
An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. The organic thin-film layer includes at least one emitting layer. The at least one emitting layer contains at least one phosphorescent material and a host material represented by the following formula (1). Ra—Ar1—Rb (1) In the formula, Ar1, Ra and Rb each represent a substituted or unsubstituted benzene ring or a condensed aromatic hydrocarbon ring selected from a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted chrysene ring, a substituted or unsubstituted fluoranthene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted benzophenanthrene ring, a substituted or unsubstituted dibenzophenanthrene ring, a substituted or unsubstituted triphenylene ring, a substituted or unsubstituted benzo[a]triphenylene ring, a substituted or unsubstituted benzochrysene ring, a substituted or unsubstituted benzo[b]fluoranthene ring and a substituted or unsubstituted picene ring. Substituents for Ra and Rb are not aryl groups.
摘要:
An organic EL device includes: an anode for injecting holes; a phosphorescent-emitting layer; a fluorescent-emitting layer; and a cathode for injecting electrons. The phosphorescent-emitting layer contains a phosphorescent host and a phosphorescent dopant for phosphorescent emission. The fluorescent-emitting layer contains a fluorescent host and a fluorescent dopant for fluorescent emission. The fluorescent host is at least one of an asymmetric anthracene derivative represented by a formula (1) below and a pyrene derivative represented by a formula (2) below.
摘要:
A composite organic EL material suited to flash deposition and a method for producing the same are provided. A composite organic electroluminescence material in which an organic material and an organic metal complex are combined with each other, wherein the melting point of the organic material is lower by 30° C. or more than the decomposition temperature of the organic metal complex.
摘要:
Provided are an organic electroluminescence device, which: shows high luminous efficiency; is free of any pixel defect; and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound of a specific structure having a π-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, or oxygen atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
摘要:
An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. In the organic electroluminescence device, the organic thin-film layer includes at least one emitting layer, and the at least one emitting layer includes at least one phosphorescent material and a host material represented by the following Formula (1). Ra—Ar1—Ar2—Rb (1) In Formula (1): Ra and Rb each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring; andAr1 and Ar2 each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring.
摘要翻译:有机电致发光器件包括:阴极; 阳极; 以及设置在阴极和阳极之间的单层或多层有机薄膜层。 在有机电致发光器件中,有机薄膜层包括至少一个发光层,并且至少一个发光层包含至少一种磷光材料和由下式(1)表示的主体材料。 Ra-Ar1-Ar2-Rb(1)在式(1)中,Ra和Rb各自表示取代或未取代的苯环或取代或未取代的稠合芳族烃环,其选自萘环, 一个环,一个荧蒽环,一个三亚苯环,菲环,苯并菲环,二苯并菲环,苯并三苯环,苯并环和吡环; Ar 1和Ar 2各自表示取代或未取代的苯环或选自萘环,烯环,荧蒽环,三亚苯环,苯并菲环的取代或未取代的稠合芳族烃环 ,二苯并菲环,苯并三亚苯环,苯并环和吡烯环。
摘要:
A phosphorescent-emitting layer contains a phosphorescent host and a phosphorescent dopant for providing phosphorescence, and a fluorescent-emitting layer contains a fluorescent host and a fluorescent dopant for providing fluorescence. A charge blocking layer blocks electrons injected into the fluorescent host of the fluorescent-emitting layer from being injected toward the charge blocking layer from the fluorescent-emitting layer, and also injects holes into the fluorescent-emitting layer from the phosphorescent-emitting layer. A triplet energy gap EgPD of the phosphorescent dopant of the phosphorescent-emitting layer, a triplet energy gap EgEB of the charge blocking layer and a triplet energy gap EgFH of the fluorescent host of the fluorescent-emitting layer satisfy the following formula (1). EgPD