Abstract:
A gas turbine engine includes a fan that has fan blades. A fan shaft is drivingly connected to the fan. A gear system is connected to the fan shaft and driven through an input. A gear system flex mount arrangement accommodates misalignment of the fan shaft and the input during operation. The gear system flex mount arrangement includes a gear mesh that defines a gear mesh lateral stiffness and a flexible support that defines a flexible support lateral stiffness that is less than 8% of the gear mesh lateral stiffness.
Abstract:
A gas turbine engine includes a gear system that provides a speed reduction between a fan drive turbine and a fan rotor. Aspects of the gear system are provided with defined flexibility. The fan drive turbine has a first exit area and rotates at a first speed. A second turbine section has a second exit area and rotates at a second speed, which is faster than said first speed. A performance quantity can be defined for both turbine sections as the products of the respective areas and respective speeds squared. A performance quantity ratio of the performance quantity for the fan drive turbine to the performance quantity for the second turbine section is between 0.5 and 1.5.
Abstract:
A gas turbine engine mount for an aircraft wing including a link body having a first joint, a second joint and a linking structure connecting the first joint to the second joint. The linking structure includes at least a flexing portion and an elastic portion. The flexing portion is configured to flex during a load outside of an expected load window.
Abstract:
A fan shaft includes a first end, a second end, and an axis, the fan shaft and configured to be coupled to a gear assembly of a gas turbine engine at the first end and to a fan more proximal to the second end than the first end such that in response to being coupled, the fan shaft can transfer torque from the gear assembly to the fan. At least one axial portion of the fan shaft satisfies the relationship 0.55 ≤ T * C J * τ ≤ 0.95 , where T represents peak torque during fan blade off, C represents a distance from a centerline of the gas turbine engine to an outer fiber of the fan shaft, J represents a polar moment of inertia of the fan shaft, and τ represents yield stress in shear of the fan shaft.
Abstract:
A geared architecture for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan shaft and a frame which supports the fan shaft, the frame defines a frame stiffness. A plurality of gears drives the fan shaft. A flexible support at least partially supports the plurality of gears, the flexible support defines a flexible support stiffness that is less than the frame stiffness. An input coupling to the plurality of gears, the input coupling defines an input coupling stiffness with respect to the frame stiffness.
Abstract:
A geared architecture for a gas turbine engine includes a fan shaft and a frame which supports said fan shaft. The frame defines a frame stiffness. A plurality of gears drives the fan shaft and includes a gear mesh that defines a gear mesh stiffness. A stiffness of a ring gear of the plurality of gears is less than about 20% of the gear mesh stiffness. A flexible support supports the geared architecture and defines a flexible support stiffness. An input coupling to the plurality of gears defines an input coupling stiffness. The flexible support stiffness and the input coupling stiffness are each less than about 11% of the frame stiffness.
Abstract:
A gas turbine engine includes a speed change mechanism. A fan drive shaft has a radially extending surface that is attached to the speed change mechanism. A speed sensor is located adjacent the radially extending surface.
Abstract:
A turbofan engine includes a fan rotatable about an axis and a compressor section including a high pressure compressor and a low pressure compressor. A turbine section includes a high pressure turbine, an intermediate turbine and a fan drive turbine. The high pressure turbine is coupled to drive the high pressure compressor. A fan drive gear system is driven by the fan drive turbine for driving the fan and a compressor drive gear system is driven by the intermediate turbine for driving the low pressure compressor.
Abstract:
A gas turbine engine includes a fan shaft and a support which supports the fan shaft. The support defines a support lateral stiffness. A gear system drives the fan shaft. A flexible support at least partially supports the gear system, and defines a flexible support lateral stiffness with respect to the support lateral stiffness. An input to the gear system defines an input lateral stiffness with respect to the support lateral stiffness. A method of designing a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine includes a fan shaft and a support which supports the fan shaft. The support defines at least one of a support transverse and a support lateral stiffness. A gear system drives the fan shaft. A flexible support at least partially supports the gear system, and defines at least one of a flexible support transverse and a flexible support lateral stiffness with respect to at least one of the support transverse and the support lateral stiffness. An input to the gear system defines at least one of an input transverse and an input lateral stiffness with respect to at least one of the support transverse and the support lateral stiffness. A method of designing a gas turbine engine is also disclosed.