Abstract:
Presented are systems and methods for distributing server-based services using a service development platform. The service development platform acquires server-based service data associated with a first server-based service, and parses the server-based service data. The service development platform catalogs the parsed server-based service data into a server-based service catalog that contains one or more server-based services different from the first server-based service. Additionally, the service development platform receives a request from a client device for the first server-based service indexed in the server-based service catalog, and provides the first server-based service to the client device.
Abstract:
Embodiments of a mobile device and methods automatically connecting to a Wi-Fi Hotspot 2.0 are generally described herein. In some embodiments, subscription information for one or more service providers (SP) that operate Wi-Fi networks is stored in a subscription data object of the mobile device. The subscription information includes home service provider information, policy information and pre-provisioned credentials. The mobile device may be configured to determine, without user interaction, if the subscription information is applicable to an available Wi-Fi network and perform without user interaction, an extensible authentication protocol (EAP) based authentication using the pre-provisioned credentials with the available Wi-Fi network to establish a Wi-Fi connection with the available Wi-Fi network. This automatic connectivity may allow a mobile device to roam across Wi-Fi hotspots of Wi-Fi networks and offload traffic to Wi-Fi networks.
Abstract:
Methods, systems, and apparatuses for receiving a first authentication message from a first authentication device of a first network employing a first authentication protocol, converting first authentication attributes in the first authentication message to second attributes, and transmitting a second authentication message including the second authentication attributes to a second authentication device of second network employing a second authentication protocol. A dual mode mobile device selects from amongst available networks and forwards authentication attributes to a selected network.
Abstract:
Embodiments of the invention relate to apparatus, system, and method for use of WLAN access enabled mobile devices such as notebooks and handheld communication devices. In particular, embodiments of the invention relate to methodology whereby WiFi enabled devices can automatically select the appropriate service provider, in a power efficient manner, thereby taking advantage of different services offered by different service providers.
Abstract:
Various embodiments enable a host controller, through its Protocol Adaption Layer (PAL) driver, to efficiently manage power consumption by employing “sleep mode” and “active mode” power settings. In some embodiments, the PAL driver may employ sleep mode settings to transition the host controller from an idle state to an energy conserving sleep state. In further embodiments, the PAL driver may use active mode settings to govern communications between the host controller and various devices, such as WUSB devices and others, thereby conserving power.
Abstract:
An example of this invention provides low latency handovers between Mobile WiMAX and 2G/3G/LTE networks with only a single radio transmitting at any given point in time, by establishing L2 tunnel between 3GPP MME and WiMAX ASN for control plane signaling to perform pre-registration, pre-authentication and context transfer to the target network, while UE maintains its connection to the source network, and by setting up bearer path for packet forwarding between Servicing Gateway and WiMAX ASN. An example of this invention uses a virtual eNB to facilitate low latency L2 handoffs to legacy 2G/3G networks with minimum impact to SGSN and MME.
Abstract:
A method of switching a device from a source network to a target network, the source network being one of a WiMAX network and a 3GPP network and the target network being another of the WiMAX network and the 3GPP network, may include receiving information from the device about the source network and about the target network. The information received from the device may be monitored to determine whether parameters of the source network have crossed a handoff threshold. The information received from the device also may be monitored to determine whether parameters of the target network are suitable for handoff. The method may also include instructing the device to perform a handover of communications to a radio associated with the target network based on the parameters of the source network, the parameters of the target network, and a handoff policy.
Abstract:
A device to request and receive a packet of information that details WLAN network information prior to association with the WLAN. This network information about the WLAN allows the device to complete automated network selection and enrollment.
Abstract:
Methods and apparatus for moving or transferring a mobile station from one type of wireless network to another type of wireless network are described herein. The methods may include employing a source radio access technology (RAT) device, a target RAT device, and a cross wireless network type inter-RAT server to collaboratively communicate with each other to move the mobile station between the different types of wireless networks.
Abstract:
A method is described that involves operating a computing system within a normal on state and transitioning from the normal on state to a main CPU/OS based state. In the main CPU/OS based state one or more components of the computing system are inactivated so as to cause the computing system to consume less power in the main CPU/OS based state than in the normal on state. The computing system is able to execute software application routines on a main CPU and a main OS of the computing system while in the main CPU/OS based state.