摘要:
An image processing apparatus for color image information inputs a combination of component values of reference colors that constitute a processing color, and converts the combination of component values into a lightness value, saturation value, and hue value. The first correction factor, the second correction factor, and the third correction factor each has a value of 1.0 for a lightness value, saturation value and hue value converted from a specified color respectively, and monotonically decreases toward 0.0. The modulation amount storage means stores a modulation amount of the lightness value, saturation value, and hue value respectively. The lightness correction means computes a corrected lightness value from the converted lightness value, the saturation correction means computes a corrected saturation value from the converted saturation value, and the hue correction means computes a corrected hue value from the converted hue value by using the first, second, and third correction factors, and the modulation amount. The inverse conversion means inversely converts the corrected lightness value, corrected saturation value, and corrected hue value into a combination of component values of reference colors.
摘要:
A binary conversion error value as to neighboring pixels stored in an error value storage portion is added to a pixel density of a subject pixel, which is read from an input image storage portion, at a ratio based on an error distribution matrix, so that a modified density is calculated. A determination is made as to whether the modified density is greater than or equal to a threshold value, and an output image is binarized based on the determination, and stored in an output image storage portion. An output density, which is a value of the output image for calculating the binary conversion error value, is set to a value corresponding to a print mode currently set. By subtracting the output density from the modified density, the binary conversion error value generated in the binarization process for the subject pixel is calculated.
摘要:
Colorimetric data corresponding to corner grid points in an RGB color space, such as grid point P1, is used without correction. For grid points positioned on an edge, such as grid point P2, an average value is calculated for calorimetric data corresponding to a total of three grid points, including a target grid point and two adjacent grid points on the edge. For grid points positioned on a surface, such as grid point P4, an average value is calculated for calorimetric data corresponding to a total of nine grid points, including the target grid point and eight adjacent grid points on the surface. For grid points positioned inside the cube-shaped grid, such as grid point P5, an average value is calculated for calorimetric data corresponding to a total of 27 grid points, including the target grid point and 26 grid points adjacent to the target grid point three-dimensionally.
摘要:
The standard brightness region is displayed with input values of zero. The comparison brightness region is displayed with an input value which is variable in the range of 0 to 255. The standard brightness and comparison brightness regions are displayed next to each other in the display. The input value is changed from zero. A first black point is determined as an input value which causes the comparison brightness region to first appear distinguishable from the black regions of the standard brightness regions. Then, the input value is changed from 255. A second black point is determined as an input value which causes the comparison brightness region to first appear indistinguishable from the black regions of the standard brightness regions. Then, a black point is calculated as an average of the first and second black points.
摘要:
In S100, multilevel density data C, M, Y, and K for a subject pixel are read out from the data recording medium. Then, the total ink density ND is calculated in S110. It is judged whether or not the total ink density ND is higher than the predetermined limit value L1. When the total density ND is not higher than the value L1 (no in S120), the original density data C, M, Y, and K for the subject pixel are subjected to the binarization process in S140. When the total density ND is higher than the value L1 (yes in S120), on the other hand, the value of the multilevel data for each chromatic color component is reduced through an ink density reduction process in S130. The thus obtained reduced multilevel data C3, M3, and Y3 and the black multilevel data are subjected to the binarization process in S140.
摘要:
The pattern to be displayed on the display is constructed from at least three tone levels to display specific shapes such as letters and numeric characters. The pattern is designed so that the user will visually perceive different shapes when displayed at different display characteristics. The display characteristic is determined according to the user's perceived shape.
摘要:
The first time a print program is activated, monitor calibration for calculating display characteristic of a display is executed (S10). Then the results of the monitor calibration operation are registered along with the present date (S20). The monitor calibration results and print information are outputted to a color printer (S30). The next and further times that the print program is activated, the number of days passed since the monitor calibration operation was last performed is calculated based on the previously registered date and on the present date (S40). Whether the calculated number of days exceeds a predetermined number of days is determined (S50). If so, then the monitor calibration operation is again performed (S60) and the calibration results and date are updated accordingly (S70).
摘要:
A printing device wherein a cut-form printing sheet and a serial-form printing sheet is selectively in use is disclosed. The disclosed printing device is characterized by:first sensing means for detecting the position of an idler gear which selectively transmits a driving force of a platen to a gear coupled to a serial-form paper feeding means;second sensing means for detecting the presence of the serial-form paper to be fed by the feeding means;displacement detecting means for detecting the displacement of said idler gear means by monitoring the results of detection of said first sensing means; andcontrol means for controlling a driving means to rotate the platen so as to reposition the idler gear means by a degree substantially corresponding to its tooth width on condition that said displacement detecting means detects the displacement of said idler gear means and that the first and second sensing means detect the presence of the serial-form sheet as well as the idler gear means being in its selected position to transmit the driving force to the gear of the feeding means.