Abstract:
Embodiments of backscatter inspection systems include features to enable inspection of irregular surfaces, tight spacer, and other hard-to-reach places. Some embodiments include arms that maneuver a scan head with at least three degrees of freedom, and some embodiments include arms that maneuver a scan head with at least seven degrees of freedom. Some embodiments include proximity detectors on a scan head or base, detect contact with an object being inspected, and to slow or stop the motion of the system accordingly. Some compact embodiments scan the interior of an object from within, and include a rotating, low-energy source of penetrating radiation, and at least one backscatter detector, which may be stationary, or may rotate with the source.
Abstract:
A system and methods for characterizing regions within, or on, an inspected object, wherein a lower-Z scattering material and a higher-Z material may both lie along a common line of sight. The inspected object is scanned with penetrating radiation characterized by an energy distribution, and penetrating radiation scattered by the inspected object is detected in a manner that generates two detector signals that distinguish between materials of higher and lower effective atomic number under distinct sets of conditions with respect to the energy distribution of the penetrating radiation. An image is generated, based on a function of the two detector signals, as is a differential image, so as to allow distinction of higher-Z and lower-Z materials.
Abstract:
Systems and methods for inspecting an object with a scanned beam of penetrating radiation. Scattered radiation from the beam is detected, in either a backward or forward direction, as is radiation transmitted through the inspected object. The source of penetrating radiation is concealed within an enclosure of a road-worthy vehicle, while a transmission detector is concealed within a separate enclosure.
Abstract:
A system and methods for characterizing regions within, or on, an inspected object, wherein a lower-Z scattering material and a higher-Z material may both lie along a common line of sight. The inspected object is scanned with penetrating radiation characterized by an energy distribution, and penetrating radiation scattered by the inspected object is detected in a manner that generates two detector signals that distinguish between materials of higher and lower effective atomic number under distinct sets of conditions with respect to the energy distribution of the penetrating radiation. An image is generated, based on a function of the two detector signals, as is a differential image, so as to allow distinction of higher-Z and lower-Z materials.
Abstract:
Apparatus for interrupting and/or scanning a beam of penetrating radiation, such as for purposes of inspecting contents of a container. A source, such as an x-ray tube, generates a fan beam of radiation effectively emanating from a source axis, with the width of the fan beam collimated by a width collimator, such as a clamshell collimator. An angular collimator, stationary during the course of scanning, limits the extent of the scan, and a multi-aperture unit, such as a hoop, or a nested pair of hoops, is rotated about a central axis, and structured in such a manner that beam flux incident on a target is conserved for different fields of view of the beam on the target. The central axis of hoop rotation need not coincide with the source axis.
Abstract:
A detector and methods for producing x-ray images, more particularly based on x-rays transmitted through an inspected object. A scintillating region is translated along a path within a cross section of a beam, the cross section taken in a plane distal to the object with respect to a source of the beam. Light emitted by the scintillator region is detected, thereby generating a detection signal, the detection signal is received by a processor which generates an image signal, and an image depicting transmitted penetrating radiation is formed on the basis of the image signal.
Abstract:
An X-ray imaging inspection system for bags and packages. Transmission imaging is performed using a fan beam and a segmented detector, while scatter imaging is performed with a scanned pencil beam, with both beams active simultaneously. Cross-talk between the beams is mitigated by a combination of shielding, scatter detector design, positioning and orientation, and image processing. Image processing subtracts the measured radiation scattered from the transmission beam into the scatter detectors, reducing cross-talk.
Abstract:
A system and methods for characterizing an inspected object on the basis of attenuation determined from pair-wise illuminated voxels. A beam of penetrating radiation characterized by a propagation direction and an energy distribution is scanned relative to an object, while scatter detectors with collimated fields-of-view detect radiation scattered by each voxel of the inspected object that is intercepted by the incident beam of penetrating radiation. By calculating the attenuation of penetrating radiation between pairs of voxels illuminated sequentially by the incident beam, a tomographic image is obtained characterizing the three-dimensional distribution of attenuation in the object of one or more energies of penetrating radiation, and thus of various material characteristics.
Abstract:
Systems and methods for inspecting an object with a scanned beam of penetrating radiation. Scattered radiation from the beam is detected, in either a backward or forward direction. Characteristic values of the scattered radiation are compared to expected reference values to characterize the object. Additionally, penetrating radiation transmitted through the inspected object may be combined with scatter information. In certain embodiments, the inspected field of view is less than 0.1 steradians, and the detector is separate from the source of penetrating radiation and is disposed, with respect to the object, such as to subtend greater than 0.5 steradians in the field of view of the object.
Abstract:
An apparatus and method for x-ray inspection of footwear while the footwear is worn on the feet of walking persons. A source of penetrating radiation, such as an x-ray tube, mounted on one side of a system, provides a fan beam of penetrating radiation contained in a substantially vertical plane, while a detector, disposed on the opposing side of the system, detects penetrating radiation that has traversed the footwear. A controller creates an image of the footwear.The system may have a sensor for detecting presence of the person and for initiating operation of the source of penetrating radiation in response thereto. The system may be installed inside a portal, such as a magnetometer portal.