摘要:
A wireless body network (8) for monitoring a patient (16, 32), the wireless body network (8) includes at least one wireless unit (10, 12, 14, 34, 36, 38, 40) coupled to the patient (16, 32) configured to collect and transmit data to the wireless body network related to one physiological function of the patient. The wireless unit (10, 12, 14, 34, 36, 38, 40) employs an addressing scheme (80), including a patient identification field (82) that contains a patient identification number that is unique to the wireless body network; at least one of a service type field (84) that contains a service type and a point type field (86) that indicates whether the wireless unit (10, 12, 14, 34, 36, 38, 40) provides a service or consumes a service; and a point identification field (88) that distinguishes one wireless unit (10, 12, 14, 34, 36, 38, 40) from another when the patient identification field (82), the service type field (84) and the point type field (88) are identical. A physical device (22, 24, 26, 28) is configured to communicate with the wireless unit (10, 12, 14, 34, 36, 38, 40) utilizing the addressing scheme (80).
摘要:
The present invention relates to a magnetic resonance imaging system, to a magnetic resonance imaging method for operating a magnetic resonance imaging system and to a computer program for operating a magnetic resonance imaging system. In order to considerably reduce the number of cabling in a magnetic resonance imaging system a magnetic resonance imaging system (1) is suggested, the system comprising: an examination zone (5) arranged to receive a body for examination; magnetic field generating means (9, 10, 24) for generating a magnetic field in the examination zone (5); a receiving unit (14) located in the examination zone (5) or in the vicinity of the examination zone (5); an interface unit (17) located in the examination zone (5) or in the vicinity of the examination zone (5), and arranged separately from the receiving unit (14); and a signal processing unit (21) disposed at a location (2) remote from the receiving unit (14) and the interface unit (17); wherein the receiving unit (14) comprising a receiver (15) adapted to receive a spin resonance signal generated in the examination zone (5), and a transmitter (16) adapted to transmit the spin resonance signal to the interface unit (17); and wherein the interface unit (17) comprises a receiver (20) for receiving the spin resonance signals, an analog to digital converter (19) adapted to generate a digital signal in response to the received spin resonance signal, and a transmitter (20) for transmitting the digitized signal to the signal processing unit (21).
摘要:
An integral handle (12) is formed in a portable patient monitoring device (10) to minimize device size and to provide a storage cavity for a stowable bedrail hook assembly (30) mounted to the device (10). A handle cavity (14) extends through a top side (16) of the device casing and out through a back side (18) of the casing to accommodate a human hand and permit an operator to grasp the integral handle (12). The hook assembly (30) has a generally U-shaped crossbar (32) that is inserted to mounting brackets (40) secured to the back side (18) of the device (10). Hook portions (34) having a curvature generally congruent to the interior of the handle cavity (14) extend from the crossbar (32) and stow inside the handle cavity (14) as the crossbar (32) rests against the back side (18) of the device when the hook assembly is stowed. The hook assembly (30) is pivoted approximately 180 degrees out and up from the handle cavity (14) to an active position for use, and the hook portions (34) are placed over a bedrail to mount the monitor.
摘要:
A pulse booster circuit (10) comprises a first pulse transfer path (41) and a second pulse transfer path (42) extending between input terminals (11a; 11b) and output terminals (12a; 12b). A series arrangement of a capacitor (20and a first breakdown switch (13) is connected between said two input terminals (11a; 11b). A series arrangement of a second breakdown switch (14) and a primary winding (31) of a transformer (30) is connected in parallel to said capacitor (20). A first output winding (32)of said transformer (30) is incorporated in said first pulse transfer path (41), while a second output winding (33) of said transform (30) is incorporated in said second pulse transfer path (42).
摘要:
Therefore, a microprocessor for processing instructions is provided. Said microprocessor comprises a cache for caching instructions and/or data to be processed, which are arranged in cache words, and an alignment unit for aligning instructions to predetermined positions with regard to cache word boundaries of said cache by introducing padding bytes (padd1, padd2). At least one of said padding bytes (padd1, padd2) include static data, which are required within the processing of one of said instructions. Accordingly, the padding bytes which are required for the alignment of the instructions, can be utilized for data which is needed during the processing of the instruction such that these bytes are not wasted and the available storage capacity is efficiently used.
摘要:
An ultrasound method and apparatus for detecting and/or measuring the pulse and/or blood flow of a subject calculates a Doppler signal spectrum from an ultrasound signal backscattered from the blood in an artery of the subject. Indicia of flow behavior are calculated for several frequency slices within the Doppler signal spectrum and these indicia may be used to determine pulsatility and/or blood flow, as well as other parameters of flow behavior. Because of the robust nature of the calculated indicia, the ultrasound method and apparatus has particular use in an Automated or Semi-Automated External Defibrillator (AED) for determining whether to defibrillate a patient.
摘要:
A docking assembly connected to a movable couch (30) docks the couch with an imaging apparatus (10). Couch alignment surfaces (72) mate with corresponding alignment surfaces (64) of a connecting region (50) of the imaging apparatus (10) to define a docked position of the movable couch (30) with respect to the imaging apparatus. A docking sensor (160) detects the movable couch (30) approaching the docked position. A latch (82) mates with the connecting region (50) of the imaging to apparatus (10). An actuator (130, 154) cooperates with the latch (82) to bias the movable couch (30) into the docked position responsive to a signal produced by the docking sensor (160).
摘要:
A receiver is described for delivering a data sequence (ak) at a data rate 1/T from an analog signal (Sa), the receiver comprising: a) converting means (40) for generating a received sequence (rn) by sampling the analog signal (Sa) with a sample rate of 1/Ts, whereby the sample rate 1/Ts of the received sequence (rn) is controllable by a preset value (Pv); b) digital processing means (12) for delivering a processed sequence (yn) by processing the received sequence (rn); c) a first sample rate converter (13) converting the processed sequence (yn) into an equivalent processed sequence (ye) at the data rate 1/T, whereby the data rate of the equivalent processed sequence (ye) is controllable by a control signal (Sc); d) an error generator (14) for delivering an error sequence (ek) from the equivalent processed sequence (ye); e) a control signal generating means (15) for generating the control signal (Sc) dependent on the error sequence (ek); f) a detector (16) for deriving the data sequence (ak) from the equivalent processed sequence (ye),whereby the ratio between the sample rates 1/T and 1/Ts is substantially constant. Conventional synchronous receivers which comprise a Sample Rate Converter have the disadvantage that the digital processing is performed within the control loop of the SRC. The delay resulting from the digital processing contributes to the overall delay of the loop, which can lead to instabilities, especially when high bandwidths are require. Therefore the receiver of the invention does the digital processing outside the control loop. To keep the advantage that the digital processing can be done at a fixed rate, the converting means (40) are controlled by a preset value for keeping the ratio T/Ts constant.