Abstract:
A method and system for displaying autostereoscopic images is presented. The design comprises a display device, a lenticular array and a computational engine associated with the lenticular array. The computational engine is configured to assess temperature expansion effects for the lenticular array and perform an interdigitation function based on the temperature expansion effects for the lenticular array. Alternately, the design comprises computing a temperature adjustment factor, the temperature adjustment factor relating an amount of expected lenticular array dimensional change to an expected temperature encountered by the lenticular array. Images are interdigitated based on the temperature adjustment factor.
Abstract:
An apparatus including an autostereoscopic image selection device and an overcoat opaque material applied to the autostereoscopic image selection device. The autostereoscopic image selection device and overcoat opaque material operate together to provide a self-locating aperture in association with the autostereoscopic selection device. The associated method entails applying an opaque overcoat material to an image selection device comprising a plurality of lenticules and removing selected portions of the opaque overcoat material from the image selection device. The applying and removing operate together with the image selection device to reduce a numerical aperture for at least one lenticule.
Abstract:
A stereoscopic image apparatus that is capable of minimizing loss of optical energy and improving quality of a stereoscopic image is disclosed. The stereoscopic image apparatus includes a polarizing beam splitter to reflect or transmit incident light based on polarization components of the light to split the light in at least three different directions, a reflective member to reflect the light reflected by the polarizing beam splitter to a screen, at least one modulator to modulate the light reflected by the reflective member and the light transmitted through the polarizing beam splitter, and a refractive member disposed in an advancing direction of light to be incident upon the polarizing beam splitter to refract the light to be incident upon the polarizing beam splitter.
Abstract:
A polarizing beam splitter assembly for directing image light on an input path into multiple exit light paths comprises multiple prisms with edges that meet to form a seam. The polarizing beam splitter assembly includes a diffracting element prior to the seam in the input light path. The diffracting element comprises a geometry that performs at least one of blocking a portion of the image light and scattering a portion of the image light.
Abstract:
A 3D image pixel in a spatially multiplexed stereo 3D display includes a first left-eye subpixel and a second left-eye subpixel that are both driven when displaying the left-eye image. The 3D image pixel also includes a first right-eye subpixel and a second right-eye subpixel that are both driven when displaying the right-eye image. The subpixels may all have a square shape. Single color emitters in the subpixels of the same eye may be driven by the same electronics. A 3D image pixel in a second spatially multiplexed stereo 3D display includes a left-eye pixel driven when displaying the left-eye image and a right-eye pixel driven when displaying the right-eye image. The pixels may all have a rectangular shape, and the horizontal measurement of the pixels may be greater than the vertical measurement of the pixels.
Abstract:
The present invention relates to a stereoscopic image device and a method for providing a stereoscopic image and, more specifically, to a stereoscopic image device and a method capable of providing a stereoscopic image, which can provide high-quality stereoscopic image by using two projectors and devices related thereto. To this end, the present invention provides the stereoscopic image device and the method for providing the stereoscopic image, the device comprising: a first polarizing beam splitter for reflecting, in first and second directions according to polarizing components, the incident light received along a firth path and transmitting the same in a third direction; a first reflection member for reflecting, in a screen direction, the light reflected from the first polarizing beam splitter; a second polarizing beam splitter for reflecting, in the first and second directions according to the polarizing components, the incident light received along a second path and transmitting the same in the third direction; and a second reflection member for reflecting, in the screen direction, the light reflected from the second polarizing beam splitter.
Abstract:
A stereoscopic image apparatus that is capable of minimizing loss of optical energy and improving quality of a stereoscopic image is disclosed. The stereoscopic image apparatus includes a polarizing beam splitter to reflect or transmit incident light based on polarization components of the light to split the light in at least three different directions, a reflective member to reflect the light reflected by the polarizing beam splitter to a screen, at least one modulator to modulate the light reflected by the reflective member and the light transmitted through the polarizing beam splitter, and a refractive member disposed in an advancing direction of light to be incident upon the polarizing beam splitter to refract the light to be incident upon the polarizing beam splitter.
Abstract:
A stereoscopic image display apparatus that is capable of being efficiently aligned using a remotely controlled alignment function and a method of displaying a stereoscopic image using the same are disclosed. The stereoscopic image display apparatus includes a polarizing beam splitter for spatially splitting image light emitted by a projector into at least one transmitted beam and at least one reflected beam based on polarized components, at least one modulator for adjusting the transmitted beam and the reflected beam such that the transmitted beam and the reflected beam have different polarization directions when a left image and a right image are projected by the transmitted beam and the reflected beam, an angle adjustment unit for adjusting the position on a screen on which the transmitted beam is projected in response to a first remote control signal, a remote-control alignment type reflecting member for adjusting the path of the reflected beam in response to a second remote control signal such that the reflected beam overlaps the transmitted beam projected on the position on the screen adjusted in response to the first remote control signal in order to form a single image, and a remote controller remotely connected to the angle adjustment unit and the remote-control alignment type reflecting member for transmitting the first remote control signal and the second remote control signal to the angle adjustment unit and the remote-control alignment type reflecting member, respectively.
Abstract:
The present disclosure provides discussion of screen vibration to reduce speckle in display applications and/or projection screens. Electrical transducers or reactors may be used with a screen to reduce or remove speckle in projection screens and/or display applications. Electrical transducers may not be directly mounted to a screen, thus eliminating many mechanical failure modes associated with a vibrating transducer as well as resulting in a much quieter operation. By design, the reactors or transducers may actually contact the screen, and can take up less than one square inch of screen surface each, than previous designs, which may be outside of the active viewing area and within 12 inches of the screen border, preferably less than approximately 1 inch from screen edge. The reactors are magnets, though any ferrous material can be made to work with certain operating conditions.
Abstract:
The present disclosure includes systems and methods for solving speckle problems by exciting the screen with a more complex vibration spectrum. A range of frequencies provides, in effect, a collection of overlapping patterns of high and low displacement, so that all regions of the screen have enough motion to reduce visible speckle. As previously discussed acceptable speckle may be approximately 15% contrast or less, preferably approximately 5% contrast or less at approximately 15 feet from the screen.