Abstract:
A module, configured to generate electric power inside a pipeline, in particular as the pipeline is being laid on the bed of a body of water, has a turbine configured to intercept an airflow fed in a travelling direction; and a rotating electric machine connected to the turbine, surrounding the turbine, and configured to produce electric power.
Abstract:
A system configured to execute an underwater well drilling program in the bed of a body of water has a jack-up having a floating structure and a drilling installation supported on the floating structure; and an auxiliary floating unit connectable selectively to the jack-up to enable transfer of the jack-up over the body of water, even in very shallow water.
Abstract:
Process for the production of alkyl ethers by the etherification of isobutene, contained in C4-C5 hydrocarbon streams, with linear alcohol, in the presence of acid catalysts, comprising the following essential steps: a) feeding the isobutene contained in C4-C5 hydrocarbon cuts, together with one or more streams containing linear alcohol, to a first reaction step; b) sending the stream leaving the first reaction step to a first distillation area, separating a light stream from a heavy stream containing the desired ether; c) feeding the light stream separated in the first distillation area, together with one or more streams containing linear alcohol, to a second reaction step; d) sending the stream leaving the second reaction step to a second distillation area separating a light stream from a heavy stream containing ether, C4 hydrocarbons and alcohol which is recycled to the first distillation area; e) sending the light stream in the second distillation area to a recovery section of the linear alcohol contained therein; f) recycling the linear alcohol recovered in the recovery section to at least one of the two reaction steps. The present invention relates to plant solutions which allow the alcohol/isobutene molar ratio to be increased in the reaction steps and therefore maximizing the conversion of isobutene.
Abstract:
Process for the production of high-purity isobutene starting from a stream prevalently containing MTBE (Methyl-Tert Butyl Ether) or ETBE (Ethyl-Tert Butyl Ether) which essentially comprises the following areas in sequence: a fractionation area for obtaining a stream of high-purity MTBE or ETBE; a cracking area of said stream of MTBE or ETBE for obtaining an outgoing stream prevalently containing isobutene and the relative alcohol, methanol or ethanol; a washing area with water of the stream leaving the cracking area for the recovery of the relative alcohol, in order to obtain a stream containing isobutene, the ether fed and light compounds and a stream substantially consisting of water and relative alcohol, with a relevant fractionation section for separating the washing water to be recycled to the same washing area from the relative alcohol; a fractionation area of the stream containing isobutene, the ether fed and light compounds for separating a stream of high-purity isobutene. The process can be possibly integrated with a process for the production of MTBE or ETBE.
Abstract:
The present invention relates to a damping and dissipation device (10) which can be used for limiting disturbances transmitted between two bodies, generated by forcing elements of a dynamic, seismic nature and by wave-motion in structures in general, which comprises two end elements (18, 14, 32) each destined for being respectively connected to one of the two bodies, the device (10) also comprising at least one disk (11) made of an elastomeric material and at least one elastic element (12) with a variable load, coaxially arranged along an axis A, the elastic element (12) with a variable load having an initial pre-compression degree and is characterized in that at least one of the end elements (18) is connected to the device (10) through a sliding coupling with a sliding direction within a plane tilted with respect to the axis (A), preferably by at least 60°.
Abstract:
A method of joining pipes to produce underwater pipelines, wherein the facing free ends of two adjacent pipes, aligned along an axis, are welded to define a cutback; a protective sheet of plastic material is extruded close to the cutback; and the protective sheet is wound about the cutback by simultaneously rotating the extruder extrusion outlet and the extruder about the pipeline as the protective sheet is extruded from the extrusion outlet.
Abstract:
A stinger extends away from an end of a vessel, and a pipeline passes over the stinger as the pipeline is laid from the vessel. The inclination of the pipeline increases as the pipeline passes along the stinger and after leaving the stinger until the pipeline reaches an inflection point beyond the end of the stinger at which inclination is at a maximum. Inclination of the pipeline thereafter reduces until the pipeline touches down on the seabed. A method of S-laying the pipeline includes providing guides on the stinger that limit lateral movement of the pipeline relative to the stinger and moving the vessel and the stinger during S-laying to an orientation in which the longitudinal axis of the stinger is inclined to the path of the pipeline just laid. The vessel and the stinger are rotated about a vertical axis passing through or adjacent to the inflection point.
Abstract:
A device includes a digging device to cut the seafloor and with a device for hooking onto a pipeline and for sliding over the same. The device includes at least one float device constrainable to the pipeline for supporting it in span, connected to the back of said digging device with respect to the direction of the movement. The method includes excavating the seafloor by a digging device, collecting a float device from a storage base and transporting it to said pipeline, constraining the first float device to the pipeline behind the digging device and connecting the first float device to the digging device, when at least one portion of pipeline is in a suspended configuration, and when the portion of suspended pipeline increases, collecting a subsequent float device and constraining it to the pipeline and connecting the same to the float device previously constrained.
Abstract:
The present invention relates to a process for the recovery of ammonia contained in a gaseous stream, said process comprising the following phases: (a) subjecting the gaseous stream containing ammonia to a washing with an aqueous washing solution having a pH lower than 7.0, with the formation of a purified gaseous stream and an aqueous solution containing an ammonium salt; (b) treating the aqueous solution containing the ammonium salt coming from phase (a) in a vertical falling film heat exchanger at a temperature from 50 to 250° C. and an absolute pressure ranging from 50 KPa to 4 MPa with the formation of a regenerated washing solution and a gaseous stream comprising NH3 and H2O; (c) recycling said regenerated washing solution to phase (a). The present invention also relates to equipment for effecting the above process.
Abstract:
A pipe-joining method for building a hydrocarbon pipeline, in particular an underwater pipeline, includes welding two adjacent pipes to form a cutback, and forming a protective coating about the cutback. Forming the protective coating includes applying an LE (liquid epoxy) resin or a powdered FBE (fusion bonded epoxy) resin to the cutback to form a primer coat; and applying a powdered polypropylene adhesive on top of the still-wet primer coat to form an auxiliary adhesive coat. Forming the protective coating also includes fitting a polypropylene heat-shrink sleeve around the auxiliary adhesive coat; and heating the sleeve to shrink and bond the sleeve to the auxiliary adhesive coat.