Abstract:
A window-based flash memory storage system and a management and an access method therefor are proposed. The window-based flash memory storage system includes a window-based region and a redundant reserved region; wherein the window-based region is used to store a number of windows, each window being associated with a number of physical blocks. The redundant reserved region includes a dynamic-link area, a window-information area, a dynamic-link information area, and an boot-information area; wherein the dynamic-link area includes a plurality of dynamic allocation blocks, each being allocatable to any window. The window-information area is used to store a specific window-information set that is dedicated to a certain window within a specific range of data storage space. The dynamic-link information area is used to record the status of the allocation of the dynamic allocation blocks to the windows.
Abstract:
The present invention relates to a multi-level read only memory cell that can store two bits and the fabrication method thereof. The multi-level ROM cell has the storage capacity of two bits and the resultant NAND type ROM memory array can provide four logic states of two bits, thus increasing the data storage capacity.
Abstract:
A method for managing the access procedure for large block flash memory by employing a page cache block, so as to reduce the occurrence of swap operation is proposed. At least one block of the nonvolatile memory is used as a page cache block. When a host requests to write a data to storage device, the last page of the data is written into one available page of the page cache block by the controller. A block structure is defined in the controller having a data block for storing original data, a writing block for temporary data storage in the access operation, and a page cache block for storing the last one page data to be written.
Abstract:
The invention is directed to a layout of nonvolatile memory device. The memory cell has a gate electrode, a first doped electrode, and a second doped electrode. The first doped electrode is coupled to the bit line. The gate electrode is coupled to one separated word line. A shared coupled capacitor structure is coupled between all of memory cells of the adjacent bit lines from the second doped electrode. The capacitor structure has at least two floating-gate MOS capacitors. Each floating-gate MOS capacitor has a floating-gate transistor having a floating gate, a first S/D region and a second S/D region; and a MOS capacitor coupled to the floating gate. The first S/D region is coupled to the second doped electrode of the corresponding one of the transistor memory cells, and the second S/D region is shared with an adjacent one of the floating-gate transistor.
Abstract:
A structure of non-volatile memory has a plurality of buried bit lines in a substrate, extending along a first direction. Selection gate structure lines are located between the buried bit lines. A plurality of stack dielectric films on the both sides of the selection gate structure lines serving as a charge storage region, does not extend to the bit lines and a dielectric layer contacting a surface of substrate adjacent to stacked dielectric films. Word lines are over the substrate, wherein stacked dielectric films and a dielectric layer are interposed between WL and substrate on the region excluding the selection gate structure line, extending along a second direction different from the first direction. Since the charge storage layer does not completely cover between the selection gate structure lines and the bit lines, an additional control gate is formed.
Abstract:
A compact mask programmable read-only memory (Mask ROM) is described, comprising a plurality of word lines, a plurality of bit lines, and a plurality of MOS-type and diffusion-type memory cells arranged in an array. The memory cells in one column are coupled to one bit line, and the gates of the MOS-type cells in one row are coupled to one word line via contacts, wherein two columns of memory cells share a column of contacts. A MOS-type cell shares its source and drain with two memory cells in the same column, and a diffusion-type cell directly connects with the diffusions of two adjacent memory cells. A constant number of continuous memory cells are grouped as a memory string, wherein the two diffusions of the two terminal memory cells are electrically connected to a bank select transistor and a ground line, respectively.