Abstract:
A method for manufacturing a light-emitting device includes steps of: providing a substrate comprising an upper surface and a lower surface opposite to the upper surface; processing the upper surface to be an uneven surface; forming a light-emitting structure on the upper surface of the substrate; and forming a hole through the substrate by radiating a coherent laser beam to the lower surface of the substrate for a predetermined time; wherein the band gap energy of the coherent laser beam is higher than the band gap energy of the substrate thereby the substrate is etched away by the laser beam.
Abstract:
A control method and an allocation structure for a flash memory device are provided herein. The flash memory device has a first memory module and a second memory module. Physical blocks of the first memory module and physical blocks of the second memory module are respectively divided into a plurality of groups, each of which has a plurality of the physical blocks. A first subunit and a second subunit of a first allocation unit are interleavingly written into a first group of the groups of the first memory module and a second group of the groups of the second memory chip respectively. Additionally, a first subunit and a second subunit of a second allocation unit are interleavingly written into a third group of the groups of the first memory module and the second group, respectively.
Abstract:
A procedure for reproducing a storage card includes providing a preliminary storage card, wherein the preliminarily storage card has been partitioned into at least a first partitioned region and a second partitioned region and content has been written into the first partitioned region; providing a master storage card without being partitioned; copying the preliminary storage card with at least the first partitioned region and the second partitioned region into the master storage card based on the logic block addressing (LBA) mode, wherein the preliminary storage card is still not partitioned yet; and writing a signature into a DOS file system area of the first partitioned region at a specific signature area, wherein the signature includes a signature ID and a partition information corresponding to at least the first partitioned region and the second partitioned region in the preliminary storage card.
Abstract:
A heat pipe cooling system including an evaporator, a pipeline, a working fluid and a thermal connector is provided. The evaporator is connected to a heat-generating element, and the pipeline is connected to the evaporator. The working fluid is injected into a closed loop formed by the evaporator and the pipeline. The thermal connector includes a first thermal conductive block and a second thermal conductive block. The first thermal conductive block has many first fitting parts and a contact surface. The contact surface is suitable for attaching to one of the surfaces of an object. The second thermal conductive block has many second fitting parts. The second fitting parts are suitable for meshing with the first fitting parts to form a piping channel inside the thermal connector. The piping channel is suitable for enclosing a section of the pipeline or directly serving as a part of the pipeline.
Abstract:
The heat transfer device at least comprises: an evaporator, a heat conductor and a connecting pipe. The evaporator comprises: a first hollow tube; a porous core mortised inside the first hollow tube; and a second hollow tube mortised on the first hollow tube. The heat conductor 220 covers the evaporator. The heat conductor is on the heating device. The connecting pipe is connected to first and second hollow tubes. The connecting pipe is used for containing a working fluid. The condenser is on the connecting pipe. The porous core, the first and second hollow tube, and the heat conductor are mortised together so as to simplify the manufacturing process, and reduce the cost. Further, the evaporator is tightly covered and fixed by the heat conductor so that the heat generated by the heating device can be uniformly conducted to the evaporator to enhance the heat conductivity.
Abstract:
A test converting card for testing an integrated circuit connector is described. The test converting card includes a test circuit board, an integrated circuit connector adapter, and a plurality of connectors. The integrated circuit connector adapter is disposed on one side of the test circuit board and the connectors are disposed on the other side thereof. The integrated circuit connector adapter is utilized to connect to an integrated circuit connector of a circuit board under test. The connectors electrically couple to the integrated circuit connector adapter by the interior circuit of the test circuit board. In combination with a manufacturing defects analyzer or an in-circuit testing equipment, a defect cause of a semi-finished product or an electronic appliance having an integrated circuit connector with quantities of pins can be quickly discovered.
Abstract:
A window-based flash memory storage system and a management and an access method therefor are proposed. The window-based flash memory storage system includes a window-based region and a redundant reserved region; wherein the window-based region is used to store a number of windows, each window being associated with a number of physical blocks. The redundant reserved region includes a dynamic-link area, a window-information area, a dynamic-link information area, and an boot-information area; wherein the dynamic-link area includes a plurality of dynamic allocation blocks, each being allocatable to any window. The window-information area is used to store a specific window-information set that is dedicated to a certain window within a specific range of data storage space. The dynamic-link information area is used to record the status of the allocation of the dynamic allocation blocks to the windows.
Abstract:
An assembly structure for subsidiary frame of eyeglasses is provided. A nose pad bracket provided on an eyeglasses major body has an engaging portion having female snap-fit portions provided at both sides thereof to fit with male snap-fit portions on the subsidiary frame. Further, an abutting segment is extended from the surface of a recessed portion on the subsidiary frame in such a manner as to fit with a recessed groove provided on a protruding portion of a nose bridge section of the subsidiary frame. Therefore, one side of the subsidiary frame is pressed against the lenses of the eyeglasses major body and the other side is firmly abutted with the protruding portion, so as to achieve firm positioning of the subsidiary frame and to protect the subsidiary frame from fall off in using.
Abstract:
A control method and an allocation structure for a flash memory device are provided herein. The flash memory device has a first memory module and a second memory module. Physical blocks of the first memory module and physical blocks of the second memory module are respectively divided into a plurality of groups, each of which has a plurality of the physical blocks. A first subunit and a second subunit of a first allocation unit are interleavingly written into a first group of the groups of the first memory module and a second group of the groups of the second memory chip respectively. Additionally, a first subunit and a second subunit of a second allocation unit are interleavingly written into a third group of the groups of the first memory module and the second group, respectively.