Abstract:
A robot has a robot arm, a support structure, and a movable platform. The platform includes a cantilevered member coupled to a guide of the support structure such that motion of the platform is directed along a first direction. The robot further includes first and second timing belts having portions that extend along the first direction and that are disposed on opposite sides of the cantilevered member, and first and second shafts movable with the movable platform. The shafts are coupled to the respective timing belts, to the robot arm such that rotation of the first shaft imparts angular motion to the robot arm and rotation of the second shaft imparts radial motion. The robot also includes a third timing belt to which the platform is coupled and by which it is moved. Motors are provided that impart movement to the timing belts.
Abstract:
A horizontal multijoint type robot is so constructed that it comprises a first arm connected through a first joint shaft to a base, a second arm connected through a second joint shaft to the first arm, and a working shaft provided rotatably and movably up and down on the distal end of the second arm, and that the arm length L1 of the first arm and the arm length L2 of the second arm are equal to each other so that the second arm is able to overlap the first arm.
Abstract:
The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder. With this twist-lock motion, the surgeon can rapidly engage and disengage various instruments from the holder during a surgical procedure, such as open surgery, laparoscopy or thoracoscopy.
Abstract:
The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder. With this twist-lock motion, the surgeon can rapidly engage and disengage various instruments from the holder during a surgical procedure, such as open surgery, laparoscopy or thoracoscopy.
Abstract:
An multi-joint robot (1) for loading/unloading a work (30) into/from a cassette, characterized by comprising a hand part (7) holding the work (30), an arm part (6) rotatably holding the hand part (7), a link mechanism (3) rotatably holding the base end side of the arm part (6) and moving so that the moving route of the base end side of the arm part (6) becomes linear in a direction roughly orthogonal to a direction for loading/unloading the work (30), and a driving means for moving the tip side of the arm part (6) so as to linearly interpolate it in a direction for loading/unloading the work (30) according to the movement of the link mechanism (3).
Abstract:
A transfer apparatus includes a stationary base, a lift base, a lifting mechanism for vertically moving the lift base, a rotary base mounted to the lift base, a rotating mechanism for rotating the rotary base about a vertical rotation axis, a linear moving mechanism supported by the rotary base, and a work hand supported by the linear moving mechanism. The lifting mechanism includes a slide guide mechanism for vertical movement of the lift base, and first and second screw-feeding mechanisms. Each screw-feeding mechanism includes a rotatable vertical screw shaft, and a nut member provided on the lift base and screwed onto the screw shaft. The first and the second screw-feeding mechanisms are spaced from each other, with the rotation axis of the rotary base being located between the first and the second screw-feeding mechanisms.
Abstract:
A substrate handling robot having a robot body and a robot arm with an end effector is configured to exhibit angular (θ), radial (R) and Z motion. A pair of coaxial shafts link the robot arm to respective motors dedicated to angular (θ) and radial (R) motions. The motors are stationarily mounted with respect to the robot body. The shafts are rotatably supported by a floating platform which is motivated in the Z direction by a third motor also stationarily mounted with respect to the robot body. The third motor is coupled to the platform by a Z motion linkage. The first and second motors are coupled to the coaxial shafts by angular and radial motion linkages each of which includes primary and secondary timing belts whose relative motions are synchronized with the Z motion linkage to achieve controllable independent angular (θ), radial (R) and Z motions in a simple, light-weight package.
Abstract:
A robot has a robot arm, a support structure, and a movable platform. The platform includes a cantilevered member coupled to a guide of the support structure such that motion of the platform is directed along a first direction. The robot further includes first and second timing belts having portions that extend along the first direction and that are disposed on opposite sides of the cantilevered member, and first and second shafts movable with the movable platform. The shafts are coupled to the respective timing belts, to the robot arm such that rotation of the first shaft imparts angular motion to the robot arm and rotation of the second shaft imparts radial motion. The robot also includes a third timing belt to which the platform is coupled and by which it is moved. Motors are provided that impart movement to the timing belts.
Abstract:
The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder. With this twist-lock motion, the surgeon can rapidly engage and disengage various instruments from the holder during a surgical procedure, such as open surgery, laparoscopy or thoracoscopy.
Abstract:
A clean assembling module device that achieves cleanliness of a work area where assembling, processing, transportation, etc. of a work item are performed and that can be downsized. The invention also includes a production system, an industrial robot, and a pollution spread prevention system that are formed with the device. A clean assembling module device is provided with clean air generation means on the top of the device and is formed so as to have a work area, a clean air retaining/exhausting area and a mechanism section area, in that order from the top side of the device. The outer periphery of the work area is shielded by a clean area shielding wall. Fluid resistance between the work area and the clean air retaining/exhausting area is controlled by a partition wall having small holes. Air came through the work area and the clean air retaining/exhausting area is exhausted by an air exhausting fan to outside the device. The work area is positively pressurized, and the mechanism section area is negatively pressurized relative to the work area. Pressure in the clean air retaining/exhausting area is adjusted by the small holes of the partition wall and by rotation speed of the air exhausting fan so as to be intermediate between the pressure in the work area and the pressure in the mechanism section area.