Abstract:
Digital watermarking is adapted for the variable data printing. A reference signal serves as a proxy for optimizing the embedding a watermark in a host image to be printed. Using the reference signal, embedding parameters are generated, which are a function of constraints such as visual quality and robustness of the machine readable data. Adjustments needed to embed a unique payload in each printed piece are generated using the embedding parameters. These adjustments are stored in a manner that enables them to be efficiently obtained and applied within the RIP or press during operation of the press. Various other methods, system configurations and applications are also detailed.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites a method comprising: obtaining data representing captured imagery, the captured imagery depicting packaging including digital watermarking, the digital watermarking including an orientation signal that is detectable in a transform domain; generating a n-dimensional feature set of the data representing captured imagery, the n-dimensional feature set representing the captured imagery in a spatial domain, where n is an integer great than 13; using a trained classifier to predict the presence of the orientation signal in a transform domain from the feature set in the spatial domain. Of course, other claims and combinations are provided too.
Abstract:
The present disclosure provides methods and systems for processing data. One claim recites a method practiced using used a user's camera-equipped portable computer system. The method includes the acts of: capturing image data corresponding to a region using the camera of the portable computer system; applying a filter to the captured image data, in which the filter prioritizes image data at a center of the region and averages images data at a relative distance from the center region; and searching the filtered image data for hidden keys. Of course, other combinations and claims are provided as well.
Abstract:
A method and device using a camera element to recognize and decode “invisible” watermarks. Of particular significance to the present invention is the development of a “designator” that is used to identify the existence of, and if desired, the approximate location of, the watermark or other coded content contained in an actual image such as media content (a displayed website, an printed or electronic advertisement, a label, billboard, brochure or any other means of displaying content) and assist in quick acquisition of the invisible watermark or other coded content by the reading device. A perceived image of the actual image can be optimized using the known characteristics of the designator.
Abstract:
The present invention relate generally to digital watermarking and data hiding. One claim recites a method including: obtaining first data and second color data, the first color data and the second color data represent data from a color image signal or color video signal; obtaining a digital watermark pattern, the pattern aiding detection of a watermark message; separating the digital watermark pattern into first frequency components and second frequency components; utilizing a programmed electronic processor or electronic processing circuitry, modifying the first color data by hiding the first frequency components therein; and utilizing a programmed electronic processor or electronic processing circuitry, modifying the second color data by hiding the second frequency components therein. Of course, other combinations and claims are provided too.
Abstract:
An image is encoded to define one or more spatial regions that can be sensed by a suitably-equipped mobile device (e.g., a smart phone), but are imperceptible to humans. When such a mobile device senses one of these regions, it takes an action in response (e.g., rendering an associated tone, playing linked video, etc.). The regions may overlap in layered fashion. One form of encoding employs modification of the color content of the image at higher spatial frequencies, where human vision is not acute. In a particular embodiment, the encoding comprises altering a transform domain representation of the image by adding signal energy in a first chrominance channel, where the added signal energy falls primarily within a segmented arc region in a transform domain space.
Abstract:
An image is encoded to define one or more spatial regions that can be sensed by a suitably-equipped mobile device (e.g., a smartphone), but are imperceptible to humans. When such a mobile device senses one of these regions, it takes an action in response (e.g., rendering an associated tone, playing linked video, etc.). The regions may overlap in layered fashion. One form of encoding employs modification of the color content of the image at higher spatial frequencies, where human vision is not acute. In a particular embodiment, the encoding comprises altering a transform domain representation of the image by adding signal energy in a first chrominance channel, where the added signal energy falls primarily within a segmented arc region in a transform domain space. In another arrangement, a smartphone display presents both image data captured from a scene, and a transform representation of the image data (e.g., in the Fourier domain). This latter information can aid a user in positioning the phone, e.g., to enhance decoding of a steganographic digital watermark. In still another arrangement, foveal filtering is applied to of smartphone-captured image data in connection with other image processing.
Abstract:
Disclosed are arrangements encode protection marks (302) into an unprotected document, where the protection marks are modulated according to a attributes of corresponding areas (902) of the unprotected document associated with the protection marks (302). Unauthorized amendment of the protected document can be detected by demodulating (1107) the modulated protection marks in the protected document, to derive the attribute of the unprotected document. This is compared to the corresponding attribute of the protected document, and this comparison indicates if unauthorized amendment has taken place.
Abstract:
A method of embedding information in an input image, wherein the information includes a plurality of characters, includes: utilizing a processing circuit to receive the information and convert each character included in the information into a corresponding symbol according to a conversion look-up table; setting a position of the corresponding symbol of each character in a data block according to a sequence look-up table to generate the data block; and adding at least the data block to the input image.
Abstract:
Variable message coding protocols enable greater flexibility in encoding auxiliary data in media signals. One such protocol employs a version identifier that indicates the type of coding used to process an auxiliary data message before it is embedded in a host media signal. This version identifier specifies the type of error robustness coding applied to a variable message. The error robustness coding may be varied to alter the message payload capacity for different versions of auxiliary data embedding and reading systems. Another protocol uses control symbols to specify the format and variable length of the variable message.