Abstract:
Multilevel voltage arrangement having a transformer and a power converter or inverter comprising one or more common DC links connectable to a power source, said arrangement comprising one first set of H bridges being connected to said common DC link, wherein each of said H bridges comprises with at least two nodes connected to the ends of wirings at the primary side of a transfer, wherein control means are configured for controlling H bridges so as to achieve a multilevel voltage signal between the first node and the second node of said H bridges.
Abstract:
The present invention provides a control apparatus for detecting an early stage short circuit between the terminals of an electrolytic capacitor, and detecting a short circuit between a load that is connected in parallel to the electrolytic capacitor, the apparatus performing appropriate processing before an adverse effect is inflicted on peripheral equipment. In the control apparatus, microcomputers switch on a second relay; an electrolytic capacitor is gradually charged via a current-limiting resistor; a first voltage detection control for detecting a voltage between terminals of the electrolytic capacitor is performed when a first set time period has elapsed after the second relay has been switched on; and a second voltage detection control for detecting a voltage between the terminals of the electrolytic capacitor is performed when a second set time period, which is longer than the first set time period, has elapsed after the second relay has been switched on.
Abstract:
Systems and methods for improved Variable Speed Drives having active inverters include an input filter for filtering common mode and differential mode currents. A three-phase inductor has three windings, each winding of the three-phase inductor having a center tap dividing each winding into a pair of inductor sections; and a three-phase input capacitor bank connected in a wye configuration to the three center taps at one end, and to a common point at the opposite end. The three-phase input capacitor bank provides a short circuit for frequencies above a predetermined fundamental frequency for shunting such frequencies through the three phase capacitor bank, while passing the predetermined fundamental frequency to an input AC power source.
Abstract:
An inverter supply voltage generator comprises an inverter supply voltage computing unit 10, a voltage converter 11 and a battery 12. The inverter supply voltage generator varies inverter supply voltage Vdc in synchronization with motor-application voltages Vu_pwm, Vv_pwm, and Vw_pwm. Thus, the degree of freedom of the switching operation of a PWM inverter 13 is increased, an inverter loss and the size of the PWM inverter 13 can be reduced, and its efficiency can be enhanced without deteriorating the driving efficiency of an IPM motor 14.
Abstract:
An apparatus for controlling a synchronous generator having a converter. A voltage detector detects a terminal voltage of a stator of the synchronous generator. A current detector detects a current flowing through the stator. A rotor position estimating part estimates a rotor position of the synchronous generator from the detected voltage and current. An active power detector detects a active power of the synchronous generator. A reactive power detector detects a reactive power of the synchronous generator or a terminal voltage detector detects an effective value of a terminal voltage of the stator. An active power controller adjusts a q-axis current command to control the active power, and a reactive power controller or terminal voltage controller adjusts a d-axis current command to control the reactive power or terminal voltage.
Abstract:
A power control apparatus for controlling power supplied to an electric motor rotating a rotor employed in a centrifuge is provided. The power control apparatus includes first and second inverters and a smoothing capacitor disposed between the first and second inverters. In a motor power mode, the first inverter charges the smoothing capacitor with power supplied by an AC power supply, while the second inverter charges, in a motor braking mode, the smoothing capacitor with power regenerated by the motor during a braking operation for returning the regenerated power back to the AC power supply through the first inverter. An reactor is arranged between the AC power supply and the first inverter for reducing harmonic components contained in the current supplied from or back to the AC power supply.
Abstract:
In an AC servomotor control system consisting of an inverter for controlling a rotational speed and an output torque of an AC servomotor, a converter for controlling a DC voltage at a connecting point between an inverter and a converter, and a controller, the DC voltage is controlled at a constant voltage when the rotational speed is under a rated speed .omega..sub.b, and controlled as an increasing voltage in proportion to the rotational speed when it is over the rated speed .omega..sub.b so that the output torque of the servomotor is maintained at a constant torque.
Abstract:
A power converter for starting an AC induction motor includes a frequency detector which compares the frequency of an AC output of the converter with a predetermined frequency and generates a detection signal if the AC output frequency is lower than the predetermined frequency, a current controller which controls the power converter such that an AC output current supplied to the motor is determined in accordance with a given current reference if the detection signal is generated, and a voltage controller which controls the power converter so that an AC output voltage applied to the motor is regulated in accordance with a given voltage reference if the detection signal disappears.
Abstract:
A self-extinguishing element such as a gate turn-off thyristor (GTO) is used for each arm of the inverter. A capacitive load is connected to the output terminal of the inverter. In a region where the output frequency of the inverter is low, the self-extinguishing element is forcibly commutated. In a high-frequency region, where the output frequency of the inverter is higher than that in the low-frequency region, the capacitive load causes the self-extinguishing element to be load-commutated.
Abstract:
An elevator control system connected to a source of three-phase alternating current which is rectified by a converter to direct current which is converted to a variable-voltage variable-frequency A.C. voltage which, in turn, drives the elevator hoist motor. A resistor and a switch are connected across the D.C. terminals of the converter. When the motor is operating in the regenerative mode, the switch is closed to permit the regenerated circuit to flow through the resistor which dissipates or consumes the regenerated power. When the regenerated power being consumed by the resistor is detected to exceed a predetermined value, the excess regenerated power is returned to the A.C. source through a regenerative inverter.